NEW COLOR TV CIRCUITS FOR 1975

Radio-Electronics

THE MAGAZINE FOR NEW IDEAS INELECTRONICS

REMOTE CONTROL FOR COLOR TV Digital Circuits Do The Job

NEW
CONCEPTS IN FM Tuner Design

SLOTTED-MASK
PICTURE TUBES
For Best Color

SEE HOW

THEY WORK MOS IC Shift
Registers

DESIGNING
 FEEDBACK CIRCUITS

For Transistor
Amplifiers

PLUS

Jack Darr's Service Clinic Equipment Reports

PTS ELEPTBOIJTSS Precision Tuner Service

LET US TAKE CARE OF YOUR TUNER PROBLEMS. . .

PTS will repair any tuner-no matter how old or new-black \& white or color-transistor or tubes-varactor or electronically tuned-UHF. 8 hour service is a must!

...THIS IS THE SERVICE WE OFFER:

Fastest Service-8 hour-in and out the same day. Overnight transit to one of our strategically located plants.
2. Best Quality - Your customers are satisfied and you are not bothered with returning tuners for rework
3. PTS uses only ORIGINAL PARTS! No homemade or make-do, inferior merchandise (this is why we charge for major parts!). You get your tuner back in ORIGINAL EQUIPMENT condition.
4. PTS is recommended by more TV Manufacturers than any other tuner companv
5. PTS is overhauling more tuners than all other tuner services combined.
VHF. UHF
UV-COMBO
IF-SUBCHASSIS
Major parts and shipping
charged at cost.
(Dealer net!)

VHF. UHF
UV-COMBO
Fast 8 hr:Service! We offer you finer, faster

The old test jig you used with tube-set chassis can work full time again. Connect the new Sylvania Rig-A-Jig CK1900X to it and presto-you have a test jig for solid-state and hybrid TV as well.

The Rig-A-Jig CK1900X has a self-contained anode voltmeter, a complete set of yoke programmers, and an internal focus supply.

And, it will give you a close impedance match in receiver deflection circuits for almost any hybrid or solid-state sets you might have to service. And these connections are easy to make with up-front, highly accessible receptacles.

With simple modifications, you can give new life to your old test jig so it can handle sets with 350 to $500 \mu \mathrm{H}$ SCR sweep, 1 and 3 mH for transformer sweep, or tube and hybrid sets with yoke inductances from 7,12 , and 16 mH . Instruction sheets and set-up manual are also included.

Ask your Sylvania distributor for more information.

Rig-A-Jig CK1900X. The newest addition to the versatile family of Chek-A-Color ${ }^{\text {MM }}$ Test Equipment.

GiB 5yLvANIA

Think of him as a 250 lb .antenna.

We know you don't have a 250 lb . antenna

But when the winds get rough you need every bit of turning power an antenna rotor can muster. The new, super power Blonder-Tongue ULTRAMATIC 1000 gets the antenna to the precise point for each station, consistently, accurately

And, by doing this, it gives the best reception by assuring ghost-free color reception and minimum multipath stereo distortion

These exclusive features make it all possible

Highest starting and running torque (175 to 200/inch Ibs.) -motor uses filtered DC power supply

Accurate 2-degree resetting _-push-to-start silent control unique direction sensing circuit utilizing five wire control cable: differential servo sensing amplifier with solid-state switching: hermetically-sealed power relay automatically disconnects rotor when not in use

Reliability -weatherproof terminals use foam-filled pad long-life. self-lubricated Celcon gears: bronze worm gear and high strength sintered steel ring gear lock antenna in position corrosion-proof cast aluminum housing: fully protected against lighting and power surges: unbreakable plastic control box.

Install the ULTRAMATIC 1000. it performs well under the most adverse conditions and will stand up for years and years

Blonder-Tongue Laboratories, Inc. One Jake Brown Road, Old Bridge, N.J. 08857

Made in U.S.A

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS

More than 65 years of electronics publishing

COLOR TELEVISION

24 Equipment Report

R\&K model 467 picture-tube tester and restorer

33 Color TV '75
There are some fascinating circuits on the 1975 models. Some of the more interesting ones are described here. by Karl Savon

41 Slotted Mask Picture Tubes
How the new RCA version works. by Jack Darr
44 Star - New Kind Of Remote Control System
Silent-Tuning-At-Random-Magnavox's new digital wireless remote control system. by Larry Steckler

SOLID-STATE
5240 COSMOS Projects For The Experimenter

ELECTRONICS

Part IV-More circuits for the practical experimenter. by R. M. Marston

55 Long-Chain MOS IC Shift Registers
See how they run. by Don Lancaster
71 Service Clinic
Orphan amplifiers-Part I. by Jack Darr

GENERAL
 ELECTRONICS

4 Looking Ahead
Tomorrow's news today. by David Lachenbruch
16 Minicomputer \& TV Typewriter Letters

43 Computer Modifications

69 Annual Index
All articles published-January through December 1974

STEREO
AUDIO HI-FI

63 High-Quality FM Tuners
New circuits that make FM tuners sound better. by Len Feldman

66 Designing Audio Feedback Circuits
Feedback improves transistor amplifier quality. See how to design your own circuits. by Mannie Horowitz

108	Advertising Index	82	New Products
16	Letters	96	Try This
6	New \& Timely	111	Reader Service Card
86	New Literature		

looking ahead

Better TV sound

Network television will have a $15-\mathrm{kHz}$ audio bandwidth in about two years. That's a promise from AT\&T, which says it may also squeeze in a second sound channel for stereo or as an alternate for-eign-language track. AT\&T, which handles intercity transmission of television, currently provides the same $5-\mathrm{kHz}$ sound for TV as it does for AM radio. After much experimentation, the telephone company now is on a crash program to choose a method of transmitling sound along with the video signal, instead of on a separate narrow-band audio line.

A subcarrier system will be used, and three different methods are currently under test In one recent test, a wideband stereo signal was sent from New York to Los Angeles and back on a video channel, and according to a top AT\&T engineer, expert listeners couldn't tell the difference between the original signal and the one which has crossed the continent twice.

No matter how much the television sound signal is improved, it won't make much difference to the viewer un less receiver sound systems can pass them along. An in-dustry-wide engineering committee, studying the entire subject of TV sound, concedes that it hasn't gotten very far with the manufacfurers, bu hopes that availability of better sound on telecasts will in spire them. An ElA panel, meanwhile, is exploring the subject of stereo sound with television manufacturers. One problem may well crop up if sound is improved substantially. Although the television signal can accommodate a high-fidelity sound channel, many existing TV sets-designed for the present limited and compressed sound signal -would be brought to the point of unintelligibility. Therefore, some thought is being given to a pilot-signal or com-
panding system for sound compatibility with both cheap lo-fi and the hoped-for future hi-fi receivers.

Philips buys Magnavox

The worldwide electronics giant with the mouthful of a name-N. V. Philips' Gloei-lampenfabrieken-has purchased controlling interest in the Magnavox Company through its American affiliate, North American Philips. The Netherlands-based parent company, considered the world's largest manufacturer of consumer electronic products, is a technologically based firm that is also strong in computers, components, picture tubes, chemicals, lighting and appliances. Philips products in the past have received exposure in the U.S. under the Norelco brandname, and more recently Philips-brand audiophile products have entered this country. Philips is expected to continue the Magnavox brand here, at the same time strengthening Magnavox's technology and marketing.

Philips' acquisition of an American television manufacturer at this time is especially significant in terms of the upcoming battle of videodisc standards. Philips is the developer of the major optical videodisc system, that it has demonstrated throughout Western Europe to wide acclaim. A version of this system designed for the NTSC color standards was recently demonstrated in Japan, and Philips has announced that the home player probably could be built to sell for less than $\$ 500$ on the Japanese and American markets. Magnavox apparently will be the American launching pad for the Philips Video Long Play (VLP) disc system, that is scheduled to reach the market in 1976

Philips' purchase of Magnavox could lead to a confrontation with RCA over videodisc standards. RCA has devel-
oped a capacitance-storage videodisc system, that also is tentatively scheduled for 1976 marketing. Both RCA and Philips are expected to attempt to license other manufacturers. Since the two systems are incompatible, you can expect to witness strong campaigns of competitive claims-reminiscent of the 45-vs-33 rpm phonograph battle. This time, even more is at stake, since it's widely believed the videodisc market will eventually be bigger than television itself.

Home VTR again

Somewhat eclipsed by all the talk of videodiscs is the videotape recorder for the home. The latest candidate for consumer do-it-yourself video was developed by Germany's BASF and is the first longitudinally-scanned VTR to be announced in 10 years. The fixed-head unit uses a relatively tiny (4.6×4.3 $x 0.6$ inch) single-reel cartridge containing $1 / 4$-inch chromium-dioxide tape. The tape has 28 parallel longitudinal tracks. Running at 120 ips, each track is scanned in sequence, the tape changing direction at the end of each track. The turnaround time is only 80 milliseconds, virtually unnoticeable. Cartridges of 90 minutes and two hours are planned. Tentative introduction date is late 1976. The principle of longitudinal scanning was described in this column in July.

Several other home VTR's may be introduced in 1975. RCA has completed in-home testing of consumer video recorders and is expected to have one on the market next year-although the exact configuration isn't yet certain. Sony, whose U-Matic videocassette system has been the most successful type in the industrial and institutional markets, is also scheduled to premiere its home version in 1975. In Japan, Toshiba and Sanyo have jointly developed
a "home" videocassette system using $1 / 2$-inch tape, now going into limited production and also destined eventually for the American market. While standardization is considered important in the play-back-only videodisc field, it may not be a major problem in VTR-since it's expected that videotape will be mainly a record-it-yourself medium.

Muntz's projection TV

Remember Earl "Madman" Muntz, who became the leading purveyor of low-priced receivers in television's early days and later introduced stereophonic tape to the automobile? He's back in TV and he aims to be part of that incipient projection TV boom we described in October Muntz is co-founder of MuntzElman Manufacturing, Inc. which is assembling the "Muntz Home TV Theatre" in Van Nuys, Cal. The Home Theatre is the first projection color TV to be offered as a single-piece furniture-styled home unit. It's mounted in a walnut-finished cabinet 54 inches wide, 25 inches deep and 36 inches high, topped by a 30-by-40-inch Kodak Ektalite aluminum reflective screen. When the set is put into use, a drawer is pulled out, and a lens and mirror system throws the picture on the screen.

The electronic part of the projection TV system is a modified Sony 15 -inch re-mote-control color set, which is mounted in the drawer, screen upwards. The projected picture, like others which use a three-color tube as the light source, must be viewed in a darkened room. Muntz is producing sets at the rate of about 200 a month and currently is selling them only in a few areas, but hopes eventually to have nationwide distribution. The price? It's \$1,995

by DAVID LACHENBRUCH

CONTRIBUTING EDITOR

We're making it our business to make your business easier.

General Electric's STC program. It takes the'Tough'out of 'Tough Dog' service.

S. stands for our new Symptom Repair Manual. It was created for you by GE to deal with the most common faults. It lists a variety of symptoms. And then tells you what to check and in what order.
T. stands for our Troubleshooting Flow Charts. If a particular problem was not found by using the Symptom Repair Manual, these charts will take you through a logical sequence of checks to locate the faults.
C. stands for time-consuming Circuit Analysis. If you follow the ' S ' and ' T ', in most cases you will never have to get to ' C .' With these two service aids you can quickly diagnose 95% of all General Electric TV service problems. Using them will save you time, money and aggravation. And needless to say, they'll help you generate a lot of good will and build your reputation for fast, reliable service.

The Symptom Repair Manual is available for a $\$ 1.00$ handling charge. To receive your copy or details of GE service subscription plans, write "Dutch" Meyer, GE Television Receiver Products Department, Portsmouth, Va. 23705; or call collect (804) 484-3521.

STC. A service technician's best friend.

new etimely

Low-priced music for the masses supplied by "anti-profit" shop

Because they "didn't want to see a society without music," four Washington women have opened what they call "an anti-profit enterprise" to sell phonograph records at phenomenally low prices, reports the Washington Post/Potomac.

Named "Bread and Roses" after a line in an old worker's song, the new establishment markets records of African music, blues, folk and rock at about a 9 per cent markup.

Used LP's are also sold on consignment, at prices ranging from 25 cents to $\$ 2$, depending on the record and its condition. Bread and Roses also sells records to its customers for taping (a perfectly legal process if the tape is for the customer's personal use). If returned in mint condition, the records are repurchased by the store at 70% of the original price, and resold at a discount. As an example, a "taped" Allman Brothers double album selis for $\$ 3.70$.

Other original features of the Washington store include a newsletter, a musicians' clearing-house, and a community bulletin board.

Equipment out of warranty?
 New device will tell when

A warranty is designed to protect a purchaser from innate defects or short life in the equipment he buys. But the 90 -day, 1 -year or even 2 -year warranty often fails to protect, simply because time does not indicate usage. One television set is in use a minimum of 10 hours per day, 365 days per year (except for Leap Year). Another is used about 2 hours an evening most evenings. The first customer's pix tube fails near the end of the second year, and the manufacturer accepts full re-
sponsibility. The second set runs one day over the two years, and the warranty is useless. Yet tube No. 1 has operated for more than 5000 hours and tube No. 2 has run less than 1500!

North American Philips Controls Corp. has just come out with a device that may be able to even out such difficulties. Somewhat reminiscent of gadgets that were introduced in the early days of hi-fi to measure the length of time a stylus had played, it shows how long a piece of equipment has been in actual use. It can be used on all types of appliances, from the lightest up to and including air conditioners.

Called an elapsed-time indicator, the Jevice is an inch-long glass tube with netal caps. As long as current runs through it, copper builds up at one end, at a precise rate. Installed in new equipment by the manufacturer, it would cost about S1, Phillps believes.

Philips has not as yet installed indicators in any appliances, but indicates interest by the very action of developing such an indicator. A spokesman for another appliance manufacturer-Whirl-poob-also expressed interest and suggested that his company had also considered a similar idea.

Three persons are inducted
 \section*{into NESDA's Hall of Fame}

At its Hall of Fame banquet, held during the recent annual convention in Hawaii, the National Electronic Service Dealers Association (NESDA) elected three persons to the Association's Hall of Fame. Two of the elevations were posthumous:

Hugo Gernsback, publisher, editor, author inventor and lifetime champion of the service technician and the ama-

A BASIC. PATENT covering miniature calculators having their main electronic circuitry in a single chip has been issued to Texas Instrumentis, Inc. The model is shown holding (at left) the world's first mini-calculator that contained the equivalent of thousands of discrete devices. It was the first mini-calculator at the time to have the high degree of computational power found only in large machines. The 1974 version (still smaller) is the one at the right.

teur. He founded the first radio magazine, Modern Electrics, in 1909, and subsequently the first service organization, the Official Radio Service Men's Association (ORSMA). Later he started Radio News, and in 1929, Radio-Craft, which is now Radio-Electronics.

SPARK MATSUNAGA, US CONGRESSMAN FROM HAWAII, llew from Washington to address the Hall of Fame Banquet. He is seated at the extreme left. Next to him is Emmett Mefford, CET, chairman of the Electronic's Hall of Fame. Standing is Harvey Sunada, who coordinated the convention. He is receiving a special recognition award from Dick Glass CET, NESDA's executive vice president (behind lectern) for his work during the 11 -day affair. At right is C. Bryson Bush, HTSA, the owner of Bush Electronics, Honolulu.
Paul G. Lecoy, Sandusky, OH, a service dealer who during his life had been active in many Ohio trade asssociation activities. He had served as an officer of both NATESA and NEA.

Vincent J. Lutz, CET, St. Louis, MO. now 69 years old, Mr. Lutz has been in electronics 44 years, and has long been active in both state and national service technician's organizations. He is now the publisher of the Electronics Industry Yearbook and Director of Special Events for NESDA.
(continued on page 12)

The real way to learn digital electronics!

NRI is the only school to train you at home on a real digital computer.

Learn computer design, construction, maintenance and programming techniques on your own digital computer using a professional digital multimeter!

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics . . . and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course.

This exclusive course trains you at home on your own digital computer! This is no beginner's "logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program, store your program and data in the memory bank. Press the start button and the computer solves your

NOW..
YOUR OWN DICITAL (3 $1 / 2$ DIGITS) MULTIMETER INCLUDED AT NO EXTRA COST!
The latest in digital testing equipment along with valuable training experiments in digital techniques.
problem and displays the result instantly.
The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own $31 / 2$ digit digital multimeter . . . while you perform hundreds of experiments, building hundreds of circuits, learning organization, operation, troubleshooting and programming.

Only NRI offers you five TV／Audio Servicing Courses

Color TV repair is an－ other big opportunity field right now and NRI can train you at home to service and re－ pair any color or black \＆white TV，hi－fi equip－ ment，AM－FM radios， and sound systems． You can choose from 5 courses，starting with a basic servicing course with 65 lessons ．．．up to a Master Color TV course， complete with $25^{\prime \prime}$ diagonal solid state color TV in handsome woodgrain cabinet．No other school offers so many choices or so much value．

All courses are available with low down payment and convenient monthly payments to fit your bud－ get．And all courses provide professional tools and equipment along with NRI－designed kits for hands－ on training．With the Master Course，for instance， you receive your own $5^{\prime \prime}$ wide－band triggered sweep solid state oscilloscope，TV pattern generator， $31 / 2$ digit digital multimeter and a NRI 25 ＂diagonal solid state television receiver expressly designed for color TV training．

YOU PAY LESS WITH NRI TRAINING AND YOU GET MORE FOR YOUR MONEY．

NRI employs no salesmen，pays no commissions．We pass the savings on to you in reduced tuitions and extras in the way of professional equipment，testing instruments，etc．You can pay more，but you can＇t get better training．

NRI＇s complete communication course includes your own CB Training Transceiver

NRI prepares you for a career in the rapidly expanding field of com－ munications ．．．a field destined to double in the next decade！NRI can train you at home for one of the thou－ sands of service and maintenance jobs opening in AM and FM Trans－ mission and Reception，TV Broadcasting，Micro－ wave Systems，Teletype，Radar，Marine Electronics， Mobile Communications and Aircraft Electronics． You train on your own 23 －channel Johnson Trans－ ceiver and AC power supply；a digital multimeter， for digital experiments and precise testing；bite－ size lessons leading to your FCC license and the communications field of your choice．

NEARLY ONE MILLION STUDENTS IN 60 YEARS HAVE LEARNED AT HOME THE NRI WAY．

Mail the insert card and discover for yourself why NRI is the recognized leader in home study training． No salesman will call．Do it today and get started on that new career．

APPROVED UNDER GI BILL

For the career minded，we are approved for vet－ erans benefits．Check box on card for detalls．

MAIL THE INSERT CARD FOR YOUR FREE NRI CATALOG
 No salesman will call

NRI SCHOOLS

McGraw－Hill Continuing Education Center 3939 Wisconsin Avenue， Washington，D．C． 20016

new etimely

Featured speaker at the Hall of Fame banquet was the US Congressman from Hawaii, Hon. Spark Matsunga.

Gernsback Scholarship winners

Winner of this months 1974 Hugo Gernsback Scholarship Award, a prize of $\$ 125$ granted annually to the most deserving student in each of eight leading home-study electronics schools, is James Michael Kupchik, of Louisville, KY. A

Frank Fitzgerald
graduate of Valley High School in 1963, he joined the Air Force in 1964, working in guided missiles, and later worked on government contract Autovon Systems.

His contacts with electronics inspired him to refresh his knowledge of that subject. At the same time, he wished to learn something of color television for his own use. Mr. Kupchik therefore enrolled in the GTE Sylvania Home Study Master Color TV Servicing Program in June

1970 and graduated with an equivalent A average in December 1973. He is now working at South Central Bell Telephone Co. on data systems and private line services.
Runner-up and winner of the second award, an RCA WV-529A service special VOM, donated each month by RCA, is Frank Fitzgerald, 44, of the Bronx, NY.

> He says:

"Being a school bus driver for mentally retarded children presented the time and the opportunity to increase my knowledge of electronics, and I enrolled in the Basic Electronics program. Having completed my course, I feel a great sense of accomplishment. I find it easy to understand, condensed, and to the point. I am looking forward to enrolling in one of the more advanced career courses.'

Electronic proofreader catches most typographical errors

A computer program designed to assist in detecting typographical errors before they appear in print has been devised by two Bell Labs researchers, Robert Morris and Lorinda L. Cherry.

The manuscript is first typed into a computer, which breaks down each word into all possible two and threeletter segments, then compiles a table showing how often each segment appears in that document. The table varies with each piece of material, since it depends on the kind of words used in the particular manuscript.

The computer then looks up each word in the document and compares its combinations of letters with those in the table. It then assigns a number from 0 to 20 to each word, as an "index of peculiarity," depending on the relative rarity of the letter combinations.

The "peculiar" words are then displayed on a tube or typed out on a list, with those having the highest peculiarity index at the top. Of course, many perfectly correct words that contain uncommon combinations may appear on the list. (For example, a word with the letter " q " not followed by a " u " would almost certainly be printed. Yet the dictionary shows at least 18 words beginning with " q " with a letter other than "u" following it.) Semantic nonsense or missing lines are also undelectable.

The human proofreader then simply scans the list and corrects the errors, at a great saving of time. In one case, a 20,000 -word document was examined by the computer in 3 minutes. The author then needed less than 10 minutes to correct 30 misspellings- 23 of them in the first 100 words on the list.

NESDA elects new officers

The 1974/75 officers of the National Electronic Service Dealers Association, elected at the Honolulu convention, are:

President, Charles R. Couch, Jr., CET, Gainesville, FL; Senior Vice President, Leroy Ragsdale, CET, Fort Smith, AR; Secretary, Virgil Gaither, CET, Los Angeles, CA; Treasurer, Jack Kelly, CET, Litchfield Park, AZ. Richard L. Glass, CET, remains as Executive Vice President.

The regional vice presidents are: Region 1: Norman Smith, CET, West Hartford, CN; Region 2: Warren Baker, CET, Albany, NY; Region 3: John McPherson, CET, Yorktown, VA; Region 4: Tom Ruth, CET, Charlotte, NC; Region 5: Gerald J. Hall, Milwaukee, WI; Region 6: George Simpson, Ft. Worth, TX; Region 7: Charles Varble, Jr., St. Ann, MO; Region 8: Paul Dontje, CET, Wheatridge, CO; Region 9: Jim Rolison, Portland, OR; Region 10: Everett O. Pershing, Burbank. CA.

Officers for the International Society of Certified Electronic Technicians (ISCET) were also elected at the Convention. They are: Chairman, Larry Steckler, CET (Editor of Radio-Electronics) New York, NY; Vice Chairman: Bob Cook, CET, Garden Grove, CA; Secretary, Gordon W. Turnbull, CET, Winnipeg, Canada; Treasurer, Jesse 8. Leach, Jr. CET, Linthicum, MD.

THIS AWARD TO LARRY STECKLER, Editor of Radio-Electronics, was voted to him at the annual convention of NATESA, the National Alliance of Television and Electronic Service Technicians, in Chicago last August.

Awards to outstanding members voted at NESDA convention

At its first annual convention, held in Kauai, Hawaii, the following awards (continued on page 14)

Jerrold＇s new

 Universal RemoteControl

The Hottest New Product Since The Calculator．．．

－Makes every set on your floor a remote control modelUniversal－Attaches to any set in minutesChanges channel instantly and fine tunesTurns set on／off
\square Silent push－button varactor－diode tuning－ 12 channelsAmplifies signal and eliminates direct pick up ghosts
\square For homes，apartments，bars， hotels／motels，schools，hospitals and nursing homes．

Packaged in a sturdy，colorful，self－selling carton
JERROLD
a GENERAL INSTRUMENT company

HEADQUARTERS \＆EASTERN OFFICE 200 Witmer Rd．，Horsham，Penna．19044，（215）674－4800 SOUTHERN OFFICE 1 Perimeter Place，Suite 101．Atlanta，Georgia 30339，（404）432－3102 WESTERN OFFICE 1255 Veterans Blvd．，Redwood City．Calif．94063，（415）365－5050 MIDWESTERN OFFICE 1334 Atlantic Street，North Kansas City。Mo．64116，（816）842－1555

The GREATEST

TV Schematic Bargain EVER Offered!

Complete TV Schematics

 for less than $5 c$ each COVERS All COLOR TV 1960-1968 AND 23 BRANDS B \& W FROM $1965-1968$ Here are FABULOUS savings on nationallyknown TV schematic and service data-on everything you need to fill your vital service data needs for TV model years 1965 through 1968 , plus COLOR TV from 1960 through 1968 ! It amounts to a low, low cost of less than $\$ 9.00$ per year for your TV service data with 5 more years of Color TV coverag thrown in for good measure!
SERVICE DATA FOR 23 BRANDS

TV TECH/MATICS includes complete schematic rliagrams and vital servicing data for every TV rece:ver produced by more than 20 leading American Manufacturers for 1965 1966, 1967, and 1968. All diagrams and servicing details are completely authentic. Each years coverage is permanently bound into two convenient-to-use volumes which open flat to 11 " $\times 291 / z^{\prime \prime}$ ready to provide you with instant service data at your workbench. Some
diagrams as large as $58^{\prime \prime} \times 22^{\prime \prime}$!

HERE'S WHAT YOU GET

You receive 8 BIG volumes in all. Included is a clearly detailed and annotated TV schematic diagram for each specific model. You also get complete replacement parts lists, Alignment in structions, tube and component location disongms, plus key waveforms and voltake readings all the information you need to service over 90% of the TV receivers you'l encounter :
Each volume is organized alphabetically by manufacturer, then numerically by mode number. In addition, a handy Chassis/Mode Finder is bound into each volume. Regular list price for each year's coverage-2 BIG sell for $\$ 79.60$. Your price is ONLY $\$ 34.95$ a savings of nearly $\$ 45.00$?

MONEY-BACK GUARANTEE

Order at our risk for FREE 10 -day examination. Prove to yourself they are worth many tintes the price

CONTENTS

The 8 BIG volumes (2 for each year) cover all black-and-white receivers for model years 1965 through 1968-PLUS Color TV coverage from 1960 through 1968-for these brands: Admiral Airline, Andrea, Coronado, Curtis Mathes, Du mont, Electrohome, Emerson, Firestone, Gen eral Electric, Hoffman, Magnavox Motorola Muntz, Olymple, Packard-Bell, Philco, Philco Ford, RCA Victor, Sears Silvertone. Setchell Carlson, Sonora, Sylvania, Truetone, Westing house and Zenith
Publisher's List Price each year $\$ 19.90$ Total $\$ 79.60$. Special price $\$ 34.95$ only while they last!

LARGE PAGES, $15 \times 11^{\prime \prime}$, open flat to $291 / 2 \times 11^{\prime \prime}$ Provides complete schematic diagrams

NO RISK COUPON-MAIL TODAY

TAB Books, Blue Ridge Summit, Pa. 17214 \square I enclose $\$ 35.95$. Please send your complete 8 -vol. Tech/Matics Schematic Offer postage prepaid... plus my 5 FREE SINGLPAK Manuals.
\square Please invoice me for $\$ 35.95$ plus postage. Same refurn privileges.

[^0] Circle 6 on reader service card
new etimely
were made to members who had rendered more than ordinary service to the organization

Man of the Year: Leslie J. Nesvik, former director of education for NESDA, for his work in organizing and conducting business management schools all over the country during the past year.

Outstanding Officer: Charles R. Couch, Jr., CET, President of NESDA, for his industry and government work during the past year.

Outstanding State President: (the Hal Chase memorial award): John P. Kelley, CET, past president of the Arizona State Electronics Association (ASEA)

Outstanding Committee Chairman: Norris R. Browne, CET, who chaired the nominations committee, the Texas Electronics Association state convention and the NESDA awards committee, after chairing the NESDA merger committee for a year.
Outstanding Local Association President (the Jack Betz memorial award): Frank Grabiec, CET, president of the Maricopa chapter (Phoenix, AZ) of ASEA

Outstanding State or Regional Periodical: The Arkansas Anode, state pub-
lication edited by Bill Childs of Little Rock, Arkansas. (Two runnerup publication award certificates were also awarded this year: one to the VEA Reporter, edited by W. H. Harrison of Norfolk, VA; the other: Channel 1 Newsletter, edited by Vincent J. Lutz, CET, St. Louis, MO.

MEMBERS OF HTSA (HAWAII TELEVISIGN SERVICE ASSOCIATION) meet and greet NESDA and ISCET as the delegates arrive at Honolulu Airport. ISCET held special sessions at the Kuilima Hotel on Oalu. Larry Steckler, CET, Editor of Radio-Electronics, was elected chairman of ISCET \#or the 1974-75 term, and Gordon Turnbell, CET, Winnipeg, Canada, was elected the new secretary.

A.C. HELPS BROKEN BONES TO HEAL. The broad white band around the young lady's thigh is a transformer primary. The secondary is an "electric nail" or metal core with a magnetic winding, inserted into the broken bone. The induced current is in the order of microamps. The scene is the Kreiskrankenhaus (County Hospital) in Garmisch Partenkirchen, Bavaria.

"Learn an honest trade,"my old man used to say,"and you'll never have to knuckle under to any man."

(A TRUE STORY)

Bill De Medio of Conshohocken, Pa., has it made.

At 23 , he's a licensed master electrician. The top of a trade where there aren't enough good men to go around.

But more important, Bill's his own boss and calls his oun shots.
"I just went into my own business. And even before the sign on my truck was dry, I got my first big job.
"The contractor for a new group of houses asked me to do all the wiring. And there's bound to be a lot more work from him and other builders.
"If it wasn't for my ICS training as an
electrician, I'd still be in some dead-end jobhating what I was doing, taking orders from everyone, and never getting any thanks for it.
"As a master electrician, you're the boss on the job-even when you're working for someone. You get respect, good money, and like my old man said, you don't have to take baloney from anyone."

The right combination for success

Bill De Medio has the right combination for success. He's in a growing field. And he has good training for it. You could, too.

Especially if you're interested in one of the fast-growing careers where ICS concen-

At 23, Bill De. Medio has more freedom, more securit, and gets more respect than guys twice his age. (Phorograph by Frank Cowan.)
trates itstraining. Like Electrician. Engineering. Automotive Mechanic. TV Repair \& Servicing. Drafting. Air Conditioning. (Check choice on coupon below.)

Ideal way to learn

As an ICS student, you study at home, on your own schedule. You waste no time traveling to and from class. And you never have to miss a paycheck.

But you're never alone. Skilled instructors are always ready to help you.

If you ever have doubts or problems or just want to talk to your instructor, you can call ICS from anywhere, at any hour. Toll-free.

ICS training works

Since 1890 more than $8,500,000$ men and women have turned to ICS for career training.

Government agencies, unions and some of America's top corporations (including Ford, U.S. Steel, Mobil, Alcoa, Pan Am, GE, Motorola and RCA) use ICS courses in their own training programs.

Free demonstration lesson

If you want your job to give you more, (more money, more day-to-day satisfaction, and more future) send for our career guide booklet and free demonstration lesson.

Remember, it's your life. You might as well make the most of it. OnITICS

ICS

It e'll show you a better uay to ean a living.
IES Incernational Correspondence Schools Scranton. Pennsylvanta $1 \times$ sis
Pliase send nx the Free Carece Cuchance Borklet and Freel bemonseration Lesson for the tield I have checked below: I understand
I an under no obligation. XAフ14R
\square Electrician \square Air Conditoning/
\square Inconc Tax
Specialist
\square Accounting
\square Morel hotel
Managenkent
\square Arrline-Travel
\square Busuncss
Management Refrigeration \& Heating
\square Engincerme
\square TVSorvicing
\square Electronics
\square FCCLisensing
\square Irating
\square ICS High School \square Check here for infor

Nance \qquad Age
Address
Cirs:
State
dephon

letters

TV TYPEWRITER COMMENTS

Finally! I started ordering parts for my TV Typewriter as soon as I received the booklet in September and got it working in June.

Construction was straightforward and I had few problems. I had a few solder bridges that caused trouble, but they were my own fault. I left the plastic spacers on when I soldered the connec-

tor pins, then pushed them up close to the board with a vise. I had trouble with
the Zener-regulated negative supplies so I scrapped them and used LM-320 series regulators instead. I blew out one section of the video combiner (trying to use the self-test on something around $-12 \mathrm{~V}, 1$ think) so I bridged across to the unused section and it's still working that way. I have both pages working, but only one at a time because I have only one 7406 clock driver. I used Molex pins for all IC's.
I had a lot of trouble with the 2524's in the main memory. I bought a total of 26 and got just 12 that work properly. Mos of the rest seem "slow"-they won't accept information at the rate required but will at a slower rate.

I just finished up CIE's course in Electronics Technology and got my FCC First Class License in June. I consider building the TV Typewriter a valuable extension of my knowledge in digital electronics and well worth the cost. Thank you again for your excellent article.
RAYMOND CRANDELL
Oakdale, CA

ANOTHER TV TYPEWRITER

I have enjoyed R-E very much and have read it for many years. I have completed the recent TV Typewriter and I am now on the Mark-8 minicomputer. It

is very interesting, but getting parts up here is like looking for "hen's teeth." Duty on expensive parts also bugs me. F. G. STONE

Ontario. Canada

MINICOMPUTER ANSWERS

Thank you for the latest batch of readers' letters. Some of the questions have (continued on page 22)

KICK OUT THOSE "TOUGH DOG" TIME CONSUMING AM-FM STEREOS before they eat up all your profits.

WITH THE ONLY COMPLETE AM-FM STEREO ANALYZER ON THE MARKET TODAY...WITH ALL SIGNALS AT BETTER THAN FCC SPECS

ALL 12 SIGNALS THAT YOU NEED TO WALK THE TROUBLE OUT OF ANY AM, AM-FM, AUTO RADIO, OR THE BIGGEST HI FI IN THE BUSINESS.
TAKES THE FEAR OUT OF STEREO SERVICING BY ISOLATING PROBLEMS IN MINUTES WITH:

MONITORED BY DUMMY LOADS AND 2 D'ARSONVAL METERS FOR POWER OUTPUT AND TRUE SEPARATION TESTS.
SEE YOUR SENCORE FLPD DISTRIBUTOR FOR A 10 DAY FREE TRIAL.

[^1]

Talk to callers as if they were in the room with you．With adapter plug．43－270

May be subject lo Telephone Co．lasil）

Electronic Lab Kit

100
Projects
29^{95}
Hook up radios，alarms，amplifiers，lots more． Safe，solderless，educational，fun．28－220

AM／FM Headset Radio 29^{95}
＂Private＂ 2 －speaker， 2－band listening．12－192

when your gift

comes from Radio Shack
Exclusive Values in Mi－Fi，Tape Recorders， Radios，CB，Kits，Auto Tune－Up，Toys ．．．See Your Phone Book for Our Store Near You．

Strobe Light Kit

Weird，exciting＂stop－ action＂effect－fun at par ties．U．L．listed，28－3210

Tune and troubleshoot your own car．Portable，with manual．28－401

Walkie
Talkies
4495

Fun for two．Send and receive messages up to $1 / 4$ mile． 7.95 ea． 60－3020

Decorate with light．14＂tall． U．L．listed．272－299

FREE New 1975 Radio Shack Catalog

OVER 2000 PRODUCTS EXCLUSIVES ON EVERY PAGE BEAUTIFUL FULL COLOR Stereo • Quadraphonic • Phonographs TV Antennas •Radios•Citizens Band Kits－Recorders－Tape－Tools Auto Tune－Up • Electronic Parts Test Instruments •More！

164 pages of the tinest in homeand hobby electronics Respected brand names like Realistic．Micronta．Archer Science Fair－and theyre available only at Radio Shack siores and dealers nationwide＇See what s really new in electronics by getting this catalog now

SEND FOR YOURS TODAY！ FILL OUT COUPON BELOW 1975 Mail to Radio Shack．P．O．Box 1052 Calalog Fi Worth，Texas 76101 （Please print．）
\qquad Street City Stato \qquad
ZIP
\qquad

Timekube ${ }^{\text {（1］}}$ Radio $4995 \begin{aligned} & \text { Tunes wwv } \\ & \text { for the most }\end{aligned}$ precise time in the world． 3 crystal controlled pushbutton frequencies．Desk sized， battery powered．12－169

7 functions， 10 digits， memory，auto－constant． $65 \cdot 630$

Shortwave Radio Kit

4 Bands 2995
Tune in worldwide SW，Hams，CB，AM． $550 \mathrm{kHz}=30 \mathrm{MHz} .28 .205$

Cordless Soldering Iron 17^{95}

It＇s rechargeable．With battery，U．L．listed re－ charger．64－2075

Spots coins， jewelry，any inetal－up to $6^{\prime \prime}$ under ground or water－with speaker or meter．Head－ phone jack，too．Easy as－ sembly．28－4010

OVER 3000 STORES－ 50 STATES－ 7 COUNTRIES Retail Prices May Vary at Individual Stores

Abstract

A Government FCC License can help you qualify for an exciting, rewarding career in ELECTRONICS, the Science of the Seventies. Read how you can prepare for the license exam at home in your spare time - with a passing grade assured or your money back.

If you're out to bag a better Job in Electronics, you'd better have a Government FCC License. It will help you track down the choicest, best-paying jobs in the growing field of Electronics.

Demand for people with technical skills is growing twice as fast as any other group, while jobs for the untrained are rapidly disappearing. Right now there are thousands of new openings every year for electronics specialists. And you don't need a college education to qualify!

But you do need knowledge, knowledge of electronics fundamentals. And there is only one nationally accepted method of measuring this knowledge ... the licensing program of the FCC (Federal Communications Commission).

Why a license is important

An FCC License is a legal requirement if you want to become a Broadcast Engineer, or get into servicing any other kind of transmitting equipment - twoway mobile radios, microwave relay links, radar, etc. And even when it's not legally required, a license proves to the world that you understand the principles involved in any electronic device. Thus, an FCC "ticket" can open the doors to thousands of exciting, high-paying jobs in communications, radio and TV broadcasting, the aerospace program, industrial automation, and many other areas.

So why doesn't everyone who wants a good job in Electronics get an FCC License?

It's not that simple. You must pass a Government licensing exam. A good way to prepare for your FCC exam is to take a licensing course from Cleveland Institute of Electronics.

Our training is so effective that, in a recent survey of 787 CIE graduates, better than 9 out of 10 CIE grads passed the Government FCC License exam. That's why we can offer this famous Money-Back Warranty: when you complete any CIE licensing course, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course. You get your FCC License - or your money back!

And with CIE, you learn at home in your spare time. With AUTO-PROGRAMMED* Lessons, you'll pick up the facts, figures and electronics theories you

CIE HAS CAREER COURSES TO FIT YOUR BACKGROUND

ELECTRONICS TECHNOLOGY with LABORATORY . . . teaches you the fundamentals. With a 161 -piece laboratory you apply the principles you learn by analyzing and trouble-shooting electronics equipment.
ELECTRONICS ENGINEERING . . . A college-level course for men already working in Electronics. Covers steady-state and transient network theory, solid-state physics and circuitry, pulse techniques, computer logic and mathematics through calculus.
may have considered "complicated". . . even if you've had trouble studying in the past.

CIE Grads get licenses . . . better jobs
The value of CIE training has been demonstrated time and again by the achievements of our thousands of successful students and graduates.
An outstanding example is Ed Dulaney of Scottsbluff, Nebraska. He passed his 1st Class FCC License exam soon after completing his CIE course. Today, he owns two companies... one to manufacture and distribute two-way radio equipment, the other to maintain and repair such equipment along with home radio, TV and stereo sets. He says: "In the last three years we sold more than $\$ 1,500,000$ worth of equipment through dealers in every state plus Canada, South America and Europe."
Richard Kihn, Anahuac, Texas, worked in the engine room of a tugboat when he started his CIE training. He reports, "Before finishing, I got my FCC License and landed a job as broadcast engineer at KFDM-TV in Beaumont, Texas. I was able to work, complete my CIE course and get two raises ... all in the first year of my new career in broadcasting."

Send for FREE books

If you'd like a chance to succeed like these men, send for our FREE book, "How To Get A Commercial FCC License." It tells you all about the FCC License . . requirements for getting one . . . types of licenses available ... how the exams are organized and what kind of questions are asked... where and when the exams are held, and more.

With it, you will also receive a second FREE book, "Succeed in Electronics." For your convenience, we will try to have a representative call. Send for both books today.

APPROVED UNDER G. I. BILL

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

1776 East 17th Street, Cleveland, Ohio 44114 Accredited Member National Home Study Council

The Money Making line with over 2000
 types.

- The most complete range of domestic and foreign consum er and industrial receiving tubes in the world. Classic and antique, too
- Complete range of replacement Semiconductors.
- Discounted to give you higher profit margins
- Quality your customers can depend on.
For the name of your local distributor call (516) 293-1500 Or write.

International Components Corporation

105 Maxess Road Melville, New York 11746

LETTERS

(continued from page 16)
been asked and answered in my other letters to you. The one point that they seem to pick up is that the connections should not be made between pins 9 through 16 between the Input Multiplexer Module and the Address/Manual Module.

This should be included as soon as possible to prevent problems with operation of the computer.

Other answers are as follows:

1. Booklet page 6, fourth paragraph, last line should be: On the following boards, install the B jumpers and only resistors R1-R4 and R21.
2. Connections are made to the Molex 09-52-3081 connectors with stripped leads or male connectors Molex 09-64-1081.
3. The Interrupt Switch register is now the only source of interrupt instructions. An external encoder could be used and bussed with the switches, but this would require external circuitry as shown in the booklet.
One reader, Stephen L. Diamond, expressed interest in forming a Mark-8 software users group. That's fine with me if he wants to do it. You can suggest that readers and builders contact him direct at 311 Car! Street, San Francisco, CA 94117.

Most of the other questions are trivial. I should have a final calculator PC layout soon and I have been giving some serious thought to using one of the new Intel 8080 chips which is more powerful than the 8008.

I also have a cassette unit and a small calculator-type printer ready to be hooked up to my Mark-8.
JONATHAN A. TITUS

MORE MEMORY

I've just received your complete instructions for the Mark-8 minicomputer and not being well versed in the construction or operation of computers, I'm confused on a point you might help me clarify. On page 2, you indicate that the microprocessor can directly address up to 16,424 words of 16 K ; however, on page 3, you state that the Mark-8 may be used with up to four memory modules for a maximum of 4 K of storage space. Why is the storage space only one-fourth of the addressable capacity of the microprocessor? Is it possible to add on more than four memory modules?

In any case, this is the most exciting project l've seen in a long time and I fully intend to build it and the TV Typewriter. I would greatly appreciate a reply to this letter.
BRUCE E. BLAKESLEE
Scotch Plains, NJ
While the Intel 8008 microprocessor chip can directly address up to 16 K of memory, using the memory printed circuit boards for the Mark-8, only $4 K$ may be used. This keeps costs down for small systems by using the 1101 type RAM. Other types of memories may be used since the read/write signal is available as are the 14 address lines: D0-D7, A, B, C, D, A12 and A13. These may be used
to add up to the 16 K memory.
Larger memories may be built using cassette units or external shift registers. etc., but most systems don't require more than $4 K$.
JONATHAN A. TITUS

MINICOMPUTER PARTS

Concerning the Mark- 8 minicomputer article, I have found a couple of sources of supply for a couple of the parts which might be of value to your readers.

The Molex connectors are once again available from Force Electronics, 343 South Hindry Avenue, Inglewood, CA 90301. The price is 35c each for Molex number 09-52-3081.

If any one has trouble locating the 8263 and 8267 IC's, they are available for $\$ 5.00$ and $\$ 2.00$ respectively from one of your advertisers: James Electronics, P.O. Box 822, Belmont, CA 94002.
DENNIS E. CRUNKILTON
Mare Island, CA

REPLACEMENT IC's A PROBLEM

I have a problem which I am sure other repair shops have also had on occasion to come across at one time or another. Maybe your staff could answer me or it could be made into an article in the future.

Quite a few times I have had to replace integrated circuits, but have been unable to find listings for a replacement. For example, 1 recently had a set which needed an IC replaced and it was manufactured by General Electric. However, it was not listed in the current GE catalog. I wrote to GE to find out where I could obtain this particular part and they advised me as follows:
". . . General Electric Company is no longer a manufacturer or supplier of integrated circuits. This product line was discontinued some time ago. Other companies have purchased the right to manufacture most of the original GE types, however, some of these have never been manufactured since GE discontinued operations on this product. Some replacements are available, however, in many cases the only available units must come from some surplus parts supplier ..."

I think this is a bad situation. A company, not only GE, makes parts, discontinues them and a repair shop gets a unit which needs one of these discontinued parts to be replaced and he is stuck. I know, myself, that I can't afford to spend months and months trying to locate a surplus parts supplier. I try to repair my sets as soon as possible-not make the customer wait indefinitely while 1 try to obtain discontinued parts. At least if a company discontinues parts, they should have a cross-reference to equivalent parts.
LOUIS P. FOSHAY
Pomona, NY
R-E

IN THIS ISSUE

If new electronic circuits turn you on, don't miss the article on the new Magnavox TV remote-control system -it's different, it's digital, it's on page 44.

Now make almost all your replacements with RCA's medium-priced Colorama A's

That's the kind of socket coverage you can count on from this popular new "middle line" of RCA replacement color picture tubes. With just eight Colorama A types, you can cover almost all of the replacement market with "Grade A" performance at a price your customers can afford.

Every tube in the RCA Colorama A line is totally remanufactured. That's why they all can carry RCA's 18 -month inboarded warranty plus the option for an additional 12 months. Each has a completely new gun and a completely new screen made of the latest all-new rare-earth phosphors. In addition, every " V " type is made of advanced x-ray glass.

The RCA Colorama A line includes three Matrix types: CA-21VAKP22, CA-23VALP22 and CA-25VABP22. These advanced RCA Matrix tubes are as much as 100 percent brighter than any equivalent non-Matrix picture tube in RCA history.

So why not give your customers the "Grade A" choice. Choose Colorama A at your RCA Distributor today.

Remember, RCA is the world-wide leader in picture tubes, with over 65 million produced to date.

DELUXE DIGITAL COLOR CONVERGENCE GENERATOR

 now at a price everyone CAN AFFORDROCK SOLID PATTERNS
all ic countdown circuits quartz crystal oscillators 2 full years' warranty

10 Patterns: Full \& Gated Rainbow, 4 Crosshatch, 4 Dot, Die Casted $1 / \mathbf{o l}^{\prime \prime}$ Aluminum Case.

MODEL
SG-150
$\$ 59^{95}$
reg. $\$ 74.95$
10 Patterns: BRW Bars, White Field, 4 Crosshatch, 4 Dot.

MODEL SG-100
only $\$ 4795$
reg. $\$ 59.95$

2 Patterns: 20×16 Crosshatch, 320 Dots, weight only 1702.
SPECIAL PRICE LIMITED TIME ONLY FULL 15 DAYS MONEY BACK GUARANTEE

ELENCO ELECTRONICS INC. 8744 W. North Ter., Niles, III. 60648

```
312-825-3797
MODEL SC-
\(\square\) My check or manay order anclesed.
\(\square\) COD-Add \(\$ 2.50\) mailing \& handling.
```

NAME

ADDRESS
CITY
DISTRIBUTORS' INQUIRIES INVITED

equipment report

B \& K Model 467 Pix Tube Restorer/Analyzer

Circle 94 on reader service card
MANY MANUFACTURERS HAVE TEST instruments on the market today performing the job they were intended to do, all under the heading of picture tube checkers, rejuvenators or restorers. They range in price from $\$ 120$ to almost $\$ 500$.

The 467, a new unit from B \& K, essentially combines the desirable features of the popular devices on the market in all price ranges and throws in some new features of its own.

Figure 1 is a typical electron gun. It is composed of a heater, cathode, control grid (grid No. 1), accelerating anode (gride No. 2), and a focusing anode (grid No. 3). The final anode (grid No. 4) at the end of the gun is electrically connected to the neck coating and to the shadow mask. The mask, coating, and grid No. 4 together form the ultor anode of the tube.

As in any other thermionic emission type device, the heater brings the cathode to its operating temperature to set free electrons in motion about the cathode. The control grid (G1) is biased typically at -70 volts. The video signal is applied between the cathode and the control grid. Once the positive excursion of signal is sufficient to overcome the negative bias potential at G1, beam current flows through the aperture at G1 from the cathode and continues on at an accelerated rate to strike its proper phosphor dot.

The potentials at G2, G3, and G4 are set to assure an accelerated electron beam which is finely pinpointed (focused) when it reaches the surface of the pix tube. Remember that, what is shown in Figure 1 is a simplified version of actual potentials applied to the elements and no consideration is given to signal applications and the grids as in an actual color pix tube.

Fig. 1

Present day color TV uses mostly the three-beam tube with a magnetic convergence system. Other types of tubes are available too-the in-line, those with common elements, and the Trinitron.

What makes it tick?
Amazingly enough, regardless of the type of picture tube that's being tested, the procedure is the same. B \& K's preliminary instruction book has stated (continued on page 26)

DISPLAY：LED Matrix： 4×16 LED Matrix． 4 chan－ nels：with 16 divisions per channel useful for deter－ mining extensive time relationships．
TIME BASE：Range：from .5 u sec．to .2 sec ． Triggering：from channel one input signal；positive or negative edge selection using SYNC switch；also an automatic sweep for checking DC steady－state signals．
Range Selection：using three controls－a poten－ tiometer for initial sweep rate and two switches for X 1000 and X20 selection．

＊OR，IF YOU REALLY WANT TO SAVE，BUILD YOUR OWN MS－416 FOR JUST \＄127．50

MODES：Normal：for most troubleshooting and testing applications．Storage：on all 4 channels stores the information in a 16×4 bit high speed RAM and displays the signal continuously．
PULSE CATCHING：Single－shot storage capability：can catch and store a one－time occuring pulse in the memory and display it for as long as desired．
POWER：Battery：operation using rechargable NiCads．AC：operation using an AC－（Adap－ ter／Charger）for use with normal 110 v．a．c．

PRICE：MS－416（fully assembled）．．．．．．．．．．．．．．．．．．$\$ 189.50$

ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in

ENGINEERING MATHEMATICS

from the Indiana Home Study Institute

We are proud to announce two great new courses in Engineering Mathematics for the electronic industry.

These unusual cou, ses are the result of many years of study and thought by the President of Indiana Home Study. who has personally lectured in the classroom to monsands of men from all walks of life. on mathematics, and electrical and electronic engineering

You will have to see the lessons to appreciate them!
NOW yOu can master engineering mathematics and actually enjoy doing it? W'E ARE THIS SURE you sign no contracts-you order your. lessons on a money-back guarantee
In plain language, if you aren't satisfied you don't pay, and there are no strings attached

Write today for more information and your outline of courses
You have nothing to lose, and everything to gain!

The INDIANA HOME STUDY INSTITUTE

Dept. RE-1274, P.O. Box 1189, Panama City, Fla. 32401

EQUIPMENT REPORT

(continued from page 24)
"after the user has become thoroughly familiar with the instructions and the instrument itself, he will need only to refer to the SET-UP Chart booklet." This is indeed quite true. After only two weeks of use. I found only the need to verify the type of socket to be used for a particular tube and the G1 potential (either -50 V or -70 V). In most color pix tubes, socket 3 and a Gl potential of -50 V are used. The set-up becomes almost second nature.

A tour of the 467 in operation is now in order. Let's assume we are checking a 25AP22A pix tube. The set-up manual says to use test adapter No. 3, the heater voltage is 6.3 volts and the G1 potential is -50 volts. (Anything other than -50 V is noted with an * in the manual and the setting for Gl is then -70 volts.) We're ready to go. The TV receiver must be unplugged at all times for any testing!

With the function switch in the off position, select the proper heater voltage range. In the case of our 25AP22A we'll use a range of 4 to 7 volts.

Now rotate the function switch to the SET UP position. The G2 switch is (continued on page 28)

SCELBI COMPUTER CONSULTING, INC. Announces The Totally New and The Very First

MINI-COMPUTER

Oesigned For The
ELECTRONIC/COMPUTER HOBBYIST!
This is a true digital mini-computer with computing power that will astound you! At a LOW, LOW price you may find hard to believe. This versatile electronic wonder has been designed to delight the very heart of every person who has dreamed of owning their very own computer. It is all solid state and conservatively designed to provide years of lasting pleasure. It is a fully programmable machine.
A complete line of peripheral units are available to use with the SCELBI-8H. Such as an interface that turns a low cost oscilloscope into a complete alpha-numeric display system, low cost keyboard and TTY interfaces, and an interface that turns a low cost audio tape cassette unit into a "Mag-Tape" storage system.
Plus - a large selection of software! Programs such as Editors, Assemblers, Calculator packages, I/O routines for ASCII and Baudot machines and SCELBI interfaces, Data manipulating routines, Games, and much more.
And, the skill and support of an organization staffed with professionals dedicated to bringing you the most computer power for your money. Professionals who have been delivering SCELBI8 H systems for more than a year!
Fully tested card sets for the SCELBI-8H start as low as $\$ 440.00$! Complete computers (card set plus chassis) as low as $\$ 580.00$. And, for the real "do it yourself" buffs, we now offer "unpopulated" p.c. card sets starting as low as \$135.00. (Domestic prices.)

Literature available by request:
SCELBI COMPUTER CONSULTING, INC.
1322 Rear - Boston Post Road
Milford, CT. 06460
Phone (203) 874-1573
Circle 15 on reader service card

Tests Predetermined Frequencies 25 to 1000 MHz

- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator

The $\mathrm{FM}-2400 \mathrm{CH}$ provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies.

The $\mathrm{FM}-2400 \mathrm{CH}$ with its extended range covers 25 to 1000 MHz . The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency Stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.

Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (.000125\% special 450 MHz crystals available).
Self-contained in small portable case. Complete solid state circuitry. Rechargeable batteries.

FM-2400CH
(meter only)............... $\$ 595.00$
RF crystals (with temperature correction) $\quad 24.00$ ea. RF crystals (less temper-
ature correction)...... 18.00 ea. IF crystals...................catalog price

CRYBTAL MFG. CO. INC. HO NO LEE - OKLA CITY OKLA 33102

Get Less For Your Money.

Get a pair of HP basic test instruments that give you less-less measurement hassle because they're so easy to use. Less downtime because they're all solid-state. Less weight and bulk because this scope and probe multimeter were designed to be part of your lightweight travel kit.

Imagine a $31 / 2$-digit probe multimeter that is completely self contained, weighs only seven ounces, fits in the palm of your hand - and so advanced it AUTO ranges, AUTO zeros, and has ALTO polarity. It's practically foolproof. Completely portable. And it's absolutely unique-there's nothing else like it anywhere. At any price. And it's just \$310*. That's a surprisingly low price for a state-of-the-art instrument built to HP's
most exacting standards.
Or get our bright, full 5 -inch diagonal display oscilloscope that gives you a whole lot less of those squinting, guessing, knob-tweaking measurements you'd just as soon do without. It's a dual channel, 15 MHz lightweight (only 15 pounds) with the sensitivity, accuracy, and big-scope conveniences most troubleshooters are likely to need. And best of all, it sells for only $\$ 750^{*}$.

There you are, a top-quality scope and probe multimeter for a lot less money. They're backed by HP's reputation and worldwide service and support facilities. So why gamble? There's less chance of error when you get your measurement instruments from the measurement leader. To get the full
story on our 970A probe multimeter or the 1220A oscilloscope, just fill out and return the coupon.
*Domestic U.S.A. prices only.

Sales and service from 172 offices in 65 countries 1501 Page Mill Hoad Paio Alto Caltorn a 94306

versatile

 IS enjoyable

This IC150 . . is the finest and most versatile control unit I have ever used. For the first time I can hook all my equipment together at once. I find many semi-pro operations possible with it that I have never been able to pull off, including a first-class equalization of old tapes via the smooth and distortionless tone controls. / have rescued some of my earliest broadcast tapes by this means, recopying them to sound better than they ever did before.
--Ed Canby, AUDIO

Among the things you can do with an IC150:
Produce your own taped programs! Record from any of seven inputs: 2 phono, 2 tape, 1 tuner, 2 auxiliary (tape player, cassette deck, guitar, microphone, etc.)
Clean up record scratch, tape hiss and turntable rumble with filters which scarcely alter program material.
Improve frequency response with bass and treble controls for each channel.
Enhance stereo image with the IC150's exclusive panorama control.
Record two copies of a program at once, and monitor source and tape for each. Or, record on one tape deck while listening to a second tape.
Recreate original placement of soloists, small groups and actors, regardless of speaker position.

The IC150 performs all these functions and more with lower distortion and noise than any other preamplifier. This combination of clean sound and versatility cannot be bought anywhere else for less than $\$ 600$. But you can buy it for only $\$ 349$ at your Crown dealer. See him today to make your own comparison.

For independent labtest reports on the IC150, write CROWN, Box 1000, Elkhart, Indiana, 46514.

MADE ONLY IN AMERICA
Circle 18 on reader service card

EQUIPMENT REPORT

(contimued from page 26)
in the NORM position ($0-350 \mathrm{Vdc}$. In the SET UP position, a meter will indicate the precise heater voltage as determined by the SET hTr control. Meter 2 displays the G1 potential as determined by the SET Gl control. Meter 3 monitors the line voltage at the duplex outlet of the particular area you are in.
let's proceed to setting the precise cutoff potential of our picture tube.

Rotate the function selector switch to the cut-off position. We now use the meters to set spot cut-off of the pix tube to +1 division above zero. Spot cut-off is the point at which the pix tube at the threshold of conduction (or cut-off) for a fixed G1 potential of -50 V and varying G2. To see how this operates let's refer to Fig. 2. Notice that a

No variable control is used. It's strictly a means of monitoring. The leakage lamps will automatically indicate any interelement leakage from heatercathode or from K cathode (R, G, or B) to G1. If there is a heater-cathode short, there can be no repair. Either use a good isolation transformer or replace the tube.

Now that we have selected the proper heater voltage and G1 potential and made note of the line voltage,
single gun is drawn. Now we don't have a general operation but rather we have the actual method by which the Model 467 connects elements of the pix tube under test. Remember, the heater voltage was previously set at 6.3 volts and G1 at -50 volts. Also note that the focus grid (G3) and the accelerating anode (G2) are common. The small amount of current flowing at the cut-off point is monitored by
(continued on page 30)

Southwest Technical Products Corporation
 219 W．RHAPSODY
 SAN ANTONIO．TEXAS 78216

December， 1974

Dear Radio－Electronics Readers，
It has been some time since I have had a chance to bring you up to date on the latest news here at Southwest Technical Products．This has been a busy and kind of frantic year for us．Until this fall，deliveries on many parts have been long and undependable．It seemed that we would just solve one shortage problem when another would crop up．Happily，we seem to be past the worst of it and most of our kits can again be delivered in a reasonable time．

Early in the summer we installed a＂Datapoint 2200＂computer system to help us keep track of orders and our inventory．Now I know some of you probably have＂hang ups＂about computers，but we are very happy with this one．Since about the middle of August all orders have been completely on the system．Not only has it speeded things up in handling your orders，it also makes it possible to confirm all orders and to notify you immediately and automatically if there is to be a delay．Without old Datapoint，doing this would have taken more hours of time than we had available．

We are also once more expanding our warehouse and workspace．Thanks to all our customer friends South－ west Technical Products is continuing to grow．The additional space will make it possible to produce our kits more efficiently and hopefully help us hold our prices．The majority of our board manufacturing，chassis punching and printing work is done right here at the plant to keep costs as low as possible．This combined with our－direct to you－sales method makes our kits a real bargan compared to other similar products．

During this year we have introduced several new kit projects of which we are quite proud．We have several new amplifiers，a keyboard kit，a new guitar preamp，an octave equalizer，a compressor expander and a multimeter plug in for our digital instrument．If you don＇t have our latest catalog listing all these goodies，circle our number on the reader service card and mail it in，or call us．We will get a new catalog to you as fast as possible．IT＇S FREE．

During the coming year we will have several more new kits that I know will interest many of you．We will have a tachometer plug－in for the digital mainframe and possibly others．We will have the improved Digi－Viewer and Microlab kit too．The big one though will be our computer terminal kit．Your enthusiastic response to the ＂TV Typewritter＂（Radio－Electronics Sept．73）convinced us that many of you would appreciate a real honest to gosh professional quality terminal with all the features available on commercial units．Like the＂TV Typewritter＂ this kit will use any television set for the display，which will consist of 16 lines with 32 characters on each line． The kit will offer two pages of memory as standard equipment－not an optional extra．It will operate from our KBD－2 or any other ASCII input source．For those that want the features；we will have special cursor controls， screen read（off line edit），and a UART system．We are making the kit available in as many forms and with as many options as practical so that you can build anything from a simple TV display to a full feature computer terminal for the least possible cost．Since you use a TV set for the display，you can choose the size that is best suited to your application and it will work with any old set you may have．Would you believe you can have the basic kit with the two pages of semiconductor type memory for $\$ 175.00$ ．

See the January 1975 issue of Radio－Electronic for complete details．
Sincerely，

Daniel Meyer

SOUTHWEST TECHNICAL PRODUCTS CORPORATION

219 W．RHAPSODY DEPT．RE－L
SAN ANTONIO，TEXAS 78216

> EV•GAME makes replacing cartridges a snap. We offer virtually all originals or exact replacements. No one else comes close.

Here's an example of what that means to you:

THE ORIGINAL

BSR SX5H
Typical of cartridges you replace every day

THE EXACT REPLACEMENT

EV5344
In every way a perfect match same shape, size, color and quality. Installs easily in old bracket. Accepts original needle.

UNRETOUCHED PHOTO

THE SUBSTITUTE

ASTATIC 612

Requires replacing original bracket. Cartridge shape and needle are different. Will not accept original needle.

Tools you may need for a substitute

[^2]ØEV.GAME inc.
a Gulton company
In Canada: E-V of Canada, Ltd., Ontario

EQUIPMENT REPORT

(continued from page 28)
the meter. This current will be entirely dependent upon the setting of the G2 potential for each gun. Now we're ready to test.

Rotate the function selector switch to the test position. Automatically, the meters will indicate the condition of each gun. In the green area the gun is good. In the red area the gun is bad. You can also use the top scales of the meters for relative current indications if you wish to record data for your customer records. If the individual guns are well into the green area, we can be fairly sure the pix tube is good. Or is it? How will it track? Let's find out. See which gun provides the greatest emission. With this in mind, depress the tracking push-button and set the best gun on the "set tracking" line of its respective meter by rotating the tracking control just above the tracking push-button. The two weaker guns should now fall within the yellow wedges on their meters.

Assume that we have what appear to be three good guns. How good are they? We know that under normal heater voltage the emission is "up" and that it will track. Depress the LIFE pushbutton. This reduces heater voltage by 15% and simulates reduced line voltage. If the drop in emission is negligible you can assume not only good emission but a good life expectancy. Tracking can be checked under this reduced heater condition too. If there is good tracking, then only one other test need be made. Depress the focus pushbutton. If the focus ox lamp lights, the focus element is good.

The quality test that was just performed is one of the most important features of the Model 467. It rapidly tells the technician the emissive condition of each gun at a mere glance of the three meters, and the tube's ability to track (grey scale). Relative life span has been determined.

This is where B \& K's claim of "true" beam current measurement and the multiplex system come into the act. Refer to Fig. 3. In the TEST position of the function selector switch, G1 is set to 0 volts. The tube now attempts to conduct at its maximum. Notice that the meter is connected (as before) so it measures the current that flows from K to G2 (G3). This is what B \& K calls the "true" beam current and (according to $\mathrm{B} \& \mathrm{~K}$) is more meaningful for analysis purposes.
Our pix tube under test is still hooked up in a triode configuration. At the same time each gun is being pulsed 20 times per second. The guns (cominued on page ${ }^{78}$)

A cartridge in a pear tree.

A gift of the Shure V-15 Type III stereo phono cartridge will earn you the eternal endearment of the discriminating audiophile who receives it. What makes the $\mathrm{V}-15$ such a predictable Yuletime success, of course, is its ability to extract the real sound of pipers piping, drummers drumming, rings ringing, et cetera, et cetera. Stereo Review, in a test report that expressed more superlatives than a Christmas dinner, described the performance of the V-15 Type III as ". . . a virtually flat frequency response ... Its sound is as neutral and uncolored as can be desired." All of which means that if you're the giver, you can make a hi-fi enthusiast deliriously happy. (If you'd like to receive it yourself, keep your fingers crossed!)
Shure Brothers Inc.
222 Hartrey Ave., Evanston, III. 60204
in Canada: A. C. Simmonds \& Sons Ltd

What's the Difference?

3-1/2 digit multimeter with 6 to 13 times the accuracy of a typical analog meter

The industry's most popular bench-type VOM, compared above to our Model 282 Digital Multimeter, has 3% full scale DC accuracy. On the 50 -volt scale, that's an accuracy of ± 1.5 volts, or an accuracy of reading of 7.5% at about 20 volts. The 282 's accuracy of reading is $0.5 \% \pm 1$ least significant digit, or ± 0.11 volt. Divide those two figures-1.5 by 0.11 - and you find that the 282 has 13.6 times the accuracy at that reading.
Even at readings close to 50 volts, where the analog multimeter is most accurate, Model 282 remains more than six times as accurate as the analog multimeter.
As for ease of reading . . . the picture above shows Model 282 and the analog meter full size. Put it where you'd normally set up your multimeter ano see for
yourself how much more easily you can read the 282 's bright digital display.
And there's more-automatic polarity, clear out-ofrange indication, automatically positioned decimal point, 100% overrange capability, complete overload protection, 10 megohms input impedance and a threeposition handle that doubles as a stand for tilt-up viewing. Plus a Model PR-21 probe with switchable 100 K ohm isolation resistor to prevent capacitive loading while measuring DC in RF circuits.
And all for almost an analog price! Now in stock at your local distributor or write Dynascan.

MODEL

282
\$200

by KARL SAVON
SEMICONDUCTOR EDITOR

by no means have we seen the end of technological innovation in television de－ sign．But there is a lull in activity this year as the industry works to catch up with itself．Second and third generation solid－state models are on the market． The design bugs of first－generation sets have been ironed out．Refinements brought about by hard earned service experience have been incorporated．Chassis are sim－ pler．The tube color set is just about dead as more and more people realize the consistant long life performance ad－ vantages of solid state．My solid－state receiver of two years ago still plays like new，while a tube model of the same year and make looks like it needs a ring and valve job！

Ferroresonant transformers have been adopted by at least one other manufac－ turer beside Zenith．Instant－on is about finished and is being dropped one by one by the set－makers．

Manufacturers are spending time look－ ing at the subtler problems they didn＇t have time for before．Lower production items like modern digital remote control and sophisticated varactor tuning systems are getting attention．Touch tuning has made its debut in this country，and the in－line slotted mask picture tube is be－ coming commonplace．A surface wave i．f．filter is being used by one major producer．

All in all it is a mopping up operation with some bright spots of innovation here and there．What＇s happening is that new circuits are being developed，many of them IC＇s with their very long devel－ opment cycles．In a discrete design，a production problem is often cured by soldering a resistor on the back of a printed circuit board，but try soldering to an IC．The design must be right at the beginning．They are going to show up in the next couple of years and you＇re not going to be disappointed．

Admiral

About half of Admiral＇s models are 100% solid state．The two top models have Digital Touch Tuning．Just touching the channel number on the control panel selects one of the vhf or one out of a possible six uhf stations．The channel number lights up on a digital readout next to the screen．Most models use the 100% solid state SS 1000 chassis．The SS 1000 has plug－in satellite modules on a slide out chassis．Admiral uses their Super－Solarcolor black matrix slotted

THIS SUPER INSTA－MATIC color tuning sys－ tem controls picture quality automatically． It＇s uised by Quasar．
mask picture tube in most of their 19. inch sets．

Color Master Control calls in preset color，tint，brightness and contrast in almost all sets．

Two Sonar remote controls are avail－ able in portables and consoles．One is a two function remote for on－off and channel changing．The other 4 －function remote includes an additional volume adjust．

Quasar by Matsushita

Quasar is the new name for the Motorola line bought out by Matsushita Electric．It is an interesting situation since Quasar competes with its sister sub－ sidiary Panasonic in some market areas．

QS3000 is the name of the third gen－ eration Quasar 100 percent solid－state entry．Simplification contributes to easier servicing．A video peaking control was added to the QS3000 portables to give sharper pictures when signal conditions permit．The control had been previously reserved for consoles only．Module count is down from eight to five on non－remote models．The integrated circuit count was increased from three to four and is given credit for part of the module simpli－ fication．

Super Insta－Matic keeps the picture brightness，contrast．and color intensity in balance with changes in room bright－ ness．Similar to Magnavox＇s approach， Quasar uses a honeycomb lens in front of an LDR（light dependent resistor）． An IC responds to the sensor＇s output and controls the change in picture
energy．When Super Insta－Matic is turned off，a manual slide picture control changes the three picture parameters in the same proportion as the automatic system．

Do you use your TV for a nightlight？ ＂Slumber Sentry＂added to the＂Satellite＂ remote control system turns off the set when the tuned in station concludes its transmission day．

Speaker jacks and low level audio jacks are found at the back of the QS3000 consoles．A high－quality speaker or am－ plifier－speaker system can be substituted for the TV＇s for better sound．

What＇s new at RCA

Seven new models in four screen sizes round out the XL－100 solid state series for 1975．All of RCA＇s color models are 100% solid state for 75 ．They use about 25% less power than the equivalent former tube models．In the lineup is the new 15 inch Model ET535 and the 17 inch ET395．These sets use PST precision static toroid yokes．The yokes are per－ manently bonded to the picture tube eliminating dynamic color convergence adjustments．The picture tubes are in－line black matrix types．There is a new＂E＂ version of the CTC58 chassis used in 25 inch consoles．A new XL－ 100 chassis， the CTC76，is used in several models．It is very similar to the CTC71．Single－sided deflection boards are used rather than double－clad boards．

The new PST yoke has one－tenth the impedance of the conventional types．A new vertical module was designed to drive it．Fig． 1 is the schematic of the CTC72 vertical system．At the end of the trace interval switch Q1 is turned on and remains on for retrace．The collector of Q1 is grounded by the device＇s satura－ tion resistance turning off the Darlington connected grounded emitter amplifier Q9－ Q2．As the collectors of Q 9 and Q 2 rise toward 140 volts through R6，D4，and D5，D1 becomes forward biased when it reaches one junction voltage higher than the 26 volt reference supply．

This pulse feeds the output driver and the vertical yoke windings through C105． Returning R6 to 140 volts gives higher gain since the resistance value can be higher for the same current．The upper driver Q3 and output Q5 are emitter followers．The lower drive pair Q4 and Q6 make a composite pnp transistor．It has the characteristics of a pnp transistor， yet the bulk of the current is carried by the npn device．Current limiter Q10 turns
on if the current in R11 products a voltage that reaches the turn-on threshold of the transistor's base to emitter voltage. Q10 drains current through R6 starving Q3 and limiting the output current to a safe value. Grounding the predriver Q9's base by the transistor switch during retrace breaks any possible negative feedback path, and the amplifier operates as an open loop pulse amplifier.

At the end of the retrace period. Q1 is turned off by positive feedback through module pin 3. R409 is a current sampling resistor; the voltage across it is proportional to the current through the yoke. This voltage is fed back to the predriver through the integrating capacitor C418 and diodes D2 and D3. The base of Q9 is supplied from 26 volts through the vertical height control which determines the current or the rate at which C418 can charge.
Sync blanker Q7 forms a window or limits the portion of the vertical cycle time the oscillator can be reset or synchronized.

Changes in the CTC68 for 1975 include new audio output and kine driver modules, elimination of standby heater consumption, and an improved tuner.

The two transistor cascode mixer in the old tuner design is replaced by a dual-gate MOS type in the KRK211 tuner
as shown in Fig. 2. It has high input impedance, a very good noise figure, and low cross modulation because of its parabolic characteristics. It can withstand stronger signals so the agc can be delayed longer, improving signal to noise on moderately weak signals. The drawing shows the evolution of the design. Gate 2 of the FET has a similar effect as the upper base of the original cascoded transistor pair. R6, R7, and R8 bias the gates for best mixing.

The drain of Q1 is tuned by the shunt fed circuit L30 and C4. L30 connects to the low impedance input of the i.f. module so that looking from the mOSFET, L30 appears to be grounded.

Digital gas-discharge channel indicators are used in some models. Fig. 3 is a simplified drawing of the switching for the units uhf digital readout. Grounds are connected to the necessary cathode elements by the units switch through isolating diodes. The switch is deactivated in the VHF position when a different one takes over. In the UHF position S4002 grounds the cathodes of D6201 and D6202. D6202 conducts current to ground for the uhf display and D6201 lights the uhf indicator lamp. D6003 holds the VHF lamp off by restricting its voltage drop to two diode junction voltages, way below the gas ignition voltage.

Sony has a zinger

The Sony KV-1722 uses a 17 -inch 114 degree deflection Trinitron picture tube. It is completely solid state and uses 26 transistors, 33 diodes, 7 integrated circuits, 3 gate controlled switches and 1 FET.

The receiver has a switching mode power supply that is being used in Sony's 20 -inch Japanese and other European models.

Fig. 5 is a block diagram of the switching system. Full wave rectification produces 303 volts dc. A switching circuit operating at the horizontal scan rate, $15,734 \mathrm{~Hz}$, generates a non-symmetrical square wave output that has an average value of 103 volts dc. The 130 -volt output is compared with a 12 -volt Zener diode to pulse width modulate the chopper drive. This is a regulation loop that maintains the 130 volts dc by changing the average value of the switched waveform. It is efficient because the switching device Q603 is either on or off, both minimum dissipation states. The EVP block is an excess voltage protection system.

For some more appreciation of the system look at the schematic diagram in Fig. 4. Sony doesn't cut ocrners in their designs! The switching device Q603 is a

FIG. 1-THE NEW RCA CTA-72 VERTICAL DEFLECTION SYSTEM was designed to work with the new PST yoke.

FIG. 2—RCA's NEW KRK-211 TUNER features an improved signal-to-noise ratio with dual-gate MOS-type mixer.

FIG. 3-RCA's DIGITAL GAS-DISCHARGE channel indication. Switching for units UHF readout is shown simplified.
gate controlled switch (GCS). It is a pnpn regenerative device similar to an SCR, but the geometry is such that the gate does not lose control when the transistor is turned on. Applying a negative signal to the gate turns if off. The gate of the GCS is fed from the chopper drive transistor Q604 through transformer T603. Q603's anode is connected to the 303 volt supply through R607. The horizontal rate drive is transmitted through pin 17 from the horizontal oscillator.

Filter L601, C621, L603 removes the $15-\mathrm{kHz}$ switching frequency and its harmonics from the chopped output at the cathode of Q603. Error amplifier transistor Q608 compares a portion of the regulator output with the Zener reference. Current through R632 from the 19volt de line biases Zener D610 on through the base-to-emitter junction of Q601. Potentiometer VR601, the regulated supply voltage adjustment, is part of a resistor divider that biases the base of Q608 at 11.9 volts. Q609 is reverse biased and normally does not affect the
operation of the circuit.
As the ac line voltage and dc loads on the 130 -volt supply fluctuate, the current in Q608 varies, changing the control input to pulse-width modulator Q606Q607. Like all regulators the feedback must be negative in phase. Loading the output increases the pulse width increasing the average value output of the chopped 303 volts. Starter circuit Q601-Q602 is essential for initial turn-on. Some mechanism is needed to start the oscillator which runs on its selt-generated 19 volt supply. There is a path through R642, D604, Q602 and D605 to the 19. volt line. Initial turn on of the set gates on GCS Q602 to power up the 19 -volt line temporarily. The horızontal deflection system is then started by this voltage and takes over the 19 -volt supply generation by rectification of horizontal output pulses. Forward bias on Zener regulator D610 will then saturate Q601 pulling down the gate of Q602 and turning it off disabling the initial power flow path.

If you ever run into one of these sets
there is a characteristic of the power supply you should be aware of. If the horizontal oscillator fails, the 303 volt dc will pass through the switching circuit without being converted down. That is because it is not being chopped and the average value will equal its now constant peak value. When this happens some transistors and fuses unhappily pop along the way, confusing the unwary.

Zenith for '75

Zenith's Chromacolor II "F" line models are similar to last year's "E" line's vertical chassis. New 23 -inch and 25 -inch Titan chassis replace last year's horizontal model. The main differences between the larger and smaller sets are in the high-voltage circuits. Only one set in the 52 model 1975 line has tubes.

Power Sentry, the ferroresonant line regulating power transformer introduced last year has been retained to nobody's surprise. It does a fine job of smoothing out the bumps on the power line and gives full scan voltage with reduced

The better the

 the better you'TUBE \& TRANSISTOR TESTER

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the $5^{\prime \prime}$ solid-state oscilloscope, transistor and tube-tester, vector monitor scope, 74 sq. in. B\&W TV, and solid state stereo AM-FM receiver. The unique NTS Digital GR-2000 color TY with first ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock,) and big 315 sq . in. ultra rectangular screen. This is just a sampling of the kind of

NTS DIGIT IL GR-2000 SOLID STATE
COLOR TV WITH 315 SQ. IN. PICTURE AND VARACTOR DIGITAL TUNING
better equipment that gets you better equipped for the electronics industry.
This electronic gear is not only designed for training; it's field type - like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.
Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

The better the equipment the better you'll be equipped.

NTS TRAINING EQUIPMENT FEATURES SOLID-STATE COMPONENTS. PROJECT METHOD COURSES MAKE LEARNING EASIER, FASTER, MORE EXCITING. FREE Please rush new color catalog plus complete details on course checked. NO OBLIGATION. NO SALESMAN WILL CALL.

COLOR TV SERVICING
B\&W TV AND RADIO SERVICING ELECTRONIC COMMUNICATIONS
FCC LICENSE COURSE
ELECTRONICS TECHNOLOGY
COMPUTER ELECTRONICS
BASIC ELECTRONICS
AUDIO ELECTRONICS SERVICING
Dept. 206-124
Name Age \qquad

Address Apt. \qquad

City \qquad State

Ptease thll in ZIP code for laster service
Check for information on Gi Bill
\square Check if interested ONLY in Claseroom Training in Los Angeles Radio Electronics

NEW NTS GR 2000 DIGITAL COLOR TV. SOLID-STATE. 25" DIAGONAL. VARACTOR DIODE TUNING.

New Fully Illustrated Color Catalog Tells All About These NTS "Extras"

- Job Placement

Consultation

- Business Consultation Service
- Student Guidance
- Graduate Association
- Mechanics \& Science Bulletins, Plus Much More

APPROVED FOR VETERAN TRAINING Classroom Training Available at Los Angeles
NTS occupies a cliy block in sunny Southern California with over a million dollars in facilities devoted exclusively to technical training. Check box on reverse side for details.

NATUNAL recwical SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, Callf. 90037

equipment

Compare our training; compare our tuition. We employ no middlemen because we need no salesmen. We believe you have the right to make your own decisions based on the facts, and you'll find these all spelled out in our catalog mailing. Lessons, kits, and experiments are described in full color. Most liberal refund policy and cancellation privileges - it's all in writing. And our low tuition is another big advantage. No frills, no commissions to pay. This means lower tuition for you. You receive solid training value. NTS puts more into your training, so you get more out of
it. Make your own decision. Mail the card, or write if card is missing. There's no obligation, ever, and no salesman will call.
Approved for Veteran Training. Get facts on new 2-year extension.
NATIONAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident \& Home Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

FIG. 4-SCHEMATIC OF SONY's POWER SUPPLY SWITCHING CIRCUIT.

FIG. 5-POWER SUPPLY SWITCHING SYSTEM used on Sony's KV-1722. Switching is done at the horizontal scan rate.
ac supply voltage. A new power saving "quick-on" circuit replaces the older system. The standby filament transformer has been eliminated.

The 150-401 i.f. module uses a surface
wave filter built into an IC to simplify i.f. alignment and improve performance. The alignment procedure for this new module is 10 steps compared to the conventional 13 -step procedure. There are

ZENITH'S SLIDE-TUNE electronic tuning aystem lets you select channels in a random sequence.
no 1 st or 2 nd i.f. coils or $39.75-\mathrm{MHz}$ trap.

Zenith's electronic solid-state tuning system is a varactor diode based setup allowing any sequential mixture of 14 uhf and vhf channels. Six manually tuned receivers have this feature this year. A unique slide type channel selector is built into the tuner control panel. Signal frequency circuits are not switched mechanically, but the system does include two mechanical switches. One is to select the varactor tuning voltage and the other for band switching.

75 -ohm antenna connectors are built into some models for master or cable system hook up. (continued next month)
a long time ago，rCa developed the famous three－gun shadow－mask color picture tube．This made all－electronic color TV possible．The original de－ sign proved so successful that even the Europeans still use it．without basic changes．

Now，RCA engincers have come up with a decided improvement．First in－ troduced in early 1973，in the 15 V and 17 V sizes，they proved so success－ ful that the 1974 line includes these two sizes，and a 19 V as well．The new picture tuhe is a type 15 VADTC 01 $(17 \mathrm{~V}-19 \mathrm{~V}-$ ．etc．）and is called the＂AccuLine＂system．

These tubes use 90° deflection angle． with the three guns mounted in－line horizontally．The problems encoun－ tered in previous types have been

FIG． 1 －PHOTOMICROGRAPH OF THE SCREEN of RCA＇s new color picture tube．

FIG． 2 －PHOTOMICROGRAPH OF THE MASK shows the new slotted apertures．

-
misconvergence is easily compensated． The effects of the earth＇s magnetic field are reduced．（Wait just a minute， and you＇ll hear the＂really good news＂： it＇ll shake you up！）

No convergence board！

The most unusual thing you＇ll see when you take the back off of a set with a CTC－62 RCA chassis is the thing you don＇t see！No dynamic con－ vergence board；no dynamic conver－ gence yoke．and no blue lateral magnet on the tube－neck：only one pix tube screen control－these parts are gone． They aren＇t needed in this system．

The installation setup and conver－ gence procedure is drastically short－ ened．Most of it is done for you，at the factory－even the purity and grey－
at the factory．The deflection yoke is cemented in place after they＇re done． The tube and deflection yoke are de－ signed for each other．That＇s why we keep referring to them as a system．

How it works

In a typical delta－gun system，the beams can be statically converged at the center of the screen；however，they will be over－converged at the edges． So dynamic convergence must be used to correct this．In the in－line gun sys－ tem，the deflection yoke is designed so that there is no trapezoidal distortion at the edges，and the beams are very slightly distorted so that they make a thin vertical line at this point．Fig． 4 shows how this works．The beams can be held to less than 0.51 mm miscon－
overcome，by very precise design，as well as other things to be covered in a moment．The phosphor screen of the Acculine tube does not have the familiar triads of dots．Instead，it has lines．Fig． 1 shows a photomicro－ graph of the screen itself，and Fig． 2 shows the slotted apertures of the mask．

This type of pattern gives several advantages．Vertical lines can be ＂nested＂better than dots．The phos－ phor screen can be completely filled， while dots allow only 91% fill．The effects of geometric－trio distortion at the edges is greatly reduced：this makes edge－convergence a lot simpler． The edges of the screen are also much brighter．Due to the vertical lines and slots，vertical misconvergence is prac－ tically non－existent．and horizontal

HOW IT WORKS Slotted－mask color picture tube

RCA has come up with an improvement to their famous three－gun shadow mask color picture tube． The new picture tube is part of their Acculine system and it requires no dynamic convergence．Here＇s how it works

by JACK DARR
SERVICE EDITOR

scale adjustments．All you＇ll see on the neck of the picture tube is a rather odd－looking yoke，with only one layer of wire，and a small magnet－ring as－ sembly（Fig．3）．Let＇s see how they did it．

The good news

Here＇s the good news．With this system there are NO DYNAMIC CONVERGENCE adjustments！Only static convergence is needed．（Don＇t throw the bar－dot away；we＇ll still need it．）Because of the precision design of the gun assembly plus the special de－ sign of the deflection yoke，it is pos－ sible $t o$ build a system，consisting of the picture tube and deflection yoke， that makes dynamic convergence un－ necessary．All of these adjustments， including purity，can be and are made
vergence at any point on the entire screen．

The gun unit

Let＇s look at the design of this gun unit．To get an inherently self－con－ verging assembly，the in－line beams must pass through the center of the deflection yoke in a precisely spaced and precisely horizontal array．The grids of the new tube are a single piece，with a triple aperture．In the ＂RGB＂or cathode－drive circuit，the grids are common，making this pos－ sible．（Cathodes are separate，of course．）

This construction also eliminates thermal－expansion convergence drift， one of the bugs possible with older types．The beam－to－beam spacing in this gun assembly is only $0.2^{\prime \prime}$（5．08
mm) instead of the $0.45^{\prime \prime}$ (11.45 mm) of the delta-gun unit. This very tight spacing is possible because this is a function of tool-die dimensions, rather than mount-assembly. Tool-die dimensions can be held to extremely tight tolerance. This avoids one rare, but possible problem of the past, where tube and deflection yokes could come down on opposite sides of the tolerance, making this setup very hard to converge.

There are the four magnetic rings at the top of the electron-gun assembly. (These are internal; not the outside rings!) They have dual func-

FIG. 3-PICTURE TUBE AND DEFLECTION YOKE comes as one assembly. The dynamic convergence and purity adjustments are done at the factory.
tions; the outer ones, on the B-G guns, reduce the size of the outer-beam rasters slightly, both vertically and horizontally, by shunting a snall part of the deflection field. The two smaller ones, above and below the red gun, in the middle, provide a little extra width for this raster. With these built in corrections, the red beam always lands between the other two, at all points on the screen. Convergence errors of the red beam are always annoying, since visual fringing of red is more visible (especially to the customer.)

The base connections of this new tube are the same as those of the $110^{\circ} 29-\mathrm{mm}$ neck tubes. Blue and green grid connections are omitted since the grids are common; only one is needed. The screen is also common. so only one pin is used here: An examination of the base and socket used with this tube shows some new features. Special contacts are used, which look as if they would give much better contact, due to a larger contact area on the pins.

Convergence

Only a very slight correction is needed for convergence in this system. The purity/convergence device uses what looks like a dual assembly of conventional ring magnets, mounted in a small assembly just behind the deflection yoke. The old convergence

FIG. 4-DEFLECTION SCHEME OF THE IN-LINE SYSTEM. The beams are within $0.51-\mathrm{mm}$ misconvergence over the entire screen.

FIG. 5-FOUR RING MAGNETS are used for purity and convergence. Two lour-pole fields and two six-pole fields are used.
yoke is gone. These magnets are of a special type, made of barium ferrite. which has a permeability close to 1 (one). This helps to get rid of any undesired effects from the deflection fields on the convergence.

There are four of these rings. in
pairs. Two of them develop four-pole fields, as seen in Fig. 5. These move the outside (B / G) beams equally, in opposite directions (Fig. 5-a. b). The other set develops 6-pole fields which also move the outer beams equally, but in the same direction (Fig. 5-c. d).

So＂convergence＂boils down to mov－ ing only the two outer beams，blue and green．The red beam remains sta－ tionary；the gun design is such that the magnetic fields won＇t affect it．No in－ ternal pole－pieces are used．There is practically no interaction between the beams，resulting in very small distor－ tion in the shape of the individual beams．

The deflection yoke

I＇ve mentioned the deflection yoke as being special．It definitely is！We may have to cover its design and con－ struction in a following article；here is a capsule description of it ．This is called a PST（Precision Static Tor－ oid），and it has only a single layer winding．Each wire lies in a winding－ groove in the plastic form．This type of construction allows much tighter control of tolerances in the deflection fields．These can be＂shaped＂with such precision that several highly de－ sirable goals are met；much better focus；much more light at the edges， due to better control of beam－landing； practically no misconvergence；no
trapezoid effects at edges，and on and on．The new yoke design，precisely matched to the characteristics of the new slot－beam tube，makes this into a true＂system＂．It＇s the perfected matching of tube and yoke that gives these desirable results．

The reduced amount of wire needed， only 20% of that used in saddle yokes， also allows much better matching to solid－state drive circuits．These are in－ herently low－inductance types；the hor－ izontal windings，in parallel，have only 1.5 mH ，and 0.58 mH in series．Ver－ tical windings have only 2.3 ohms resistance，in series．

This type of design makes it pos－ sible to mount the deflection yoke at the tube factory．In a test jig，con－ vergence，purity，white uniformity，etc． are all set up and tested．The yoke is then firmly cemented to the neck of the tube．This is a thermoplastic ce－ ment，which sets quickly．It won＇t soften at any temperature found in normal operation．

[^3]asks，of course，is＂What if the yoke goes bad？＂The answer to this is that， while it isn＇t impossible，it＇s not too likely．With the bigger wire used，plus the wider spacing between turns，plus the improved，heavier insulation（four layers of high－temperature com－ pound），the chances of yoke failure are really small．This includes the most common yoke failures；arcover and insulation breakdown．With only one layer of wire，the turn－to－turn voltage stress is much reduced．If the yoke should fail，it can be taken off the tube－neck，with a heat gun，and re－ placed．

This new system should offer sev－ eral advantages to the technicians． Picture tube replacement is about as easy as B／W replacement．Only minor static adjustments are needed．（And， when you come right down to it，I know of very few technicians who really like to do dynamic converg－ ence！）So，this should go over big with them，as well as the consumer．This system has been in use since early this year，and field experience has been very good．

computer modifications

the original mark－ 8 minicomputer （see Radio Electronics，July 1974）can have up to eight output port latches to output data to experiments，readouts or the TV－Typewriter．Output port 0 is used for the display register on the front panel．Only two input ports have been provided on the Mark－8 for data input．The modifications described here，show how to increase the input capability up to eight input ports and how to use an additional sixteen out－ put commands to generate pulses for control．

Increasing output flexibility

The original construction booklet shows how decoders and gates can be added to an output port to control ex－ ternal devices，but this requires us to load an instruction into the A register and then output it to the output port where it is then decoded．Each time the computer executes an OUT in－ struction，a pulse is generated to acti－ vate one of the eight selected ports． Actually，sixteen additional ports could be added to the Mark－8 to output data， with only a few modifications or addi－ tions to the existing hardware．While the additional ports could be used to output data to other devices，the out－ put pulses may be used alone to acti－ vate devices such as flip－flops，gates， solenoids or even a calculator．We now have our original eight output ports plus sixteen pulses for external control．

The instructions used to activate the
output ports are 0101 M MM1，where the binary MMM bits are decoded to signify the particular output port．The sixteen additional ports or pulses come from instructions $0110 \mathrm{M} \mathrm{MM1}$ and $0111 \mathrm{M} \mathrm{MM1}$ which are also out type instructions．Some examples are shown in the following chart：

To add these additional pulse out－ puts to your Mark－8 computer：

1）Run a jumper（insulated）from the spare connection point，No．17，on
the CPU PC board，to the through－ the－board connection just to the lower left of pin 1 on IC13．Be sure to solder the jumper on both sides of the board． This jumper connects to pins 4 and 5 on ICl3 and pin 8 on ICl8．The sig－ nal is called output and it indicates when the computer is executing any of the twenty four OUT type instructions listed above．

2）Make the other labeled connec－ tions to an SN74154 four－to－sixteen decoder as shown in Fig．1．Connect the new output signal as shown．

Logic zero pulses are now produced at the appropriate outputs of the de－ coder when the new output instruc－ tions are executed．You can obtain positive pulses by adding an inverter to the decoder output．This increased flexibility allows us to perform ex－ ternal operations without a great deal of additional software．

For example，to pulse a flip－flop under program control we connect the clock input of the flip－flop to the de－ coder output labeled out 12．Each time the computer executes an out 12 instruction，a pulse is generated at the out 12 position on the decoder，clock－ ing the flip－flop．The other decoder outputs could be used for other pur－ poses to control relays，to start a pro－ cess or to enter data to a calculator． The addition of this decoder replaces the two SN7442 decoders shown in the example in the construction booklet as
（continued on page 85）

STAR-New Kind of TV Remote Control

> Now you can switch from any TV channel to any other TV channel in less than a second without tuning through unnecessary or unwanted channels. How's it done? There's a rather special IC that works like a computer and...

by LARRY STECKLER
EDITOR

FIG. 1-BLOCK DIAGRAM OF THE MOSTEK LSI that makes the STAR system work. Data enters the system from the keyboard on the remote or from the one on the set.

FIG. 2-THE COMB GENERATOR produces a waveform like the one shown here. Note that there is a harmonic every 6 MHz .

FIG. 4-THE BIRDIES ARE SHAPED INTO PULSES that loggle flip-flop 1 (FF1), FF1 delivers a positive transition for each channel as the counter sweeps the channels.

Want TO Watch the nine o'clock movie on channel four? Just pick up your STAR remote control. punch out . . . 0 . . . 4 . . on the calculator-like keyboard; and the station appears on the screen. The channel number is there too, right on the screen, in the upper left hand corner, for a few seconds, and then it fades away while you continue to watch the program you selected.

This new Magnavox innovation may spell the end to all the older electromechanical remotes. It puts an end to channel-by-channel switching to reach the one you want to see. Instead, you directly go from any channel to any other channel, in less than a second, without any other unwanted channels in the way. And it all works thanks to a new electronic marvel named STAR-an anacronym for Silent T uning $A t$ Random.

The total system turns the set on and off; switches channels; selects channel identification; controls volume and sound muting. A calculator-type keyboard mounted in a small wireless ultrasonic remote controls all of these functions.

Advantages of the system

There is no set up for the TV tunerall 91 channels have feedback networks that let the computer circuitry of the STAR system find the desired station. The tuner is then locked to an internal crystal oscillator by an afc loop. As a result the solid-state tuner can be easily replaced if necessary with only i.f. alignment required.

There is no fine-tuning adjustment on the set, and for that matter, no moving parts at all, even for volume control.

A switch on the TV itself. permits scanning the channels in either direction to cover all channels, if assigned active channels in an area are not known.

The number of the last channel viewed and the volume setting used are stored in the system memory when the set is turned off. When the set is switched on again, that channel and volume setting are selected. However, the memory is volatile, and if the set is disconnected while it is off, the memory is destroyed. Now, when the set comes on a channel will have to be selected; and the volume will automatically reset at minimum.

FIG．3－THE HARMONIC SPECTRUM OF FIGURE 2 is mixed with the output of the local oscillator（L．O．）as shown in this diagram．

How it works

Before we go into great detail let＇s take a brief look at how the system operates． When any switch on the remote unit is depressed，battery power in the hand－ held remote is on and an ultrasonic pulse is generated．（Each of the 15 switch func－ tions on the remote generates a different ultrasonic pulse．These pulses are $720-\mathrm{Hz}$ apart in frequency．）

The receiving unit in the TV counts the incoming frequency to decode and identi－ fy the function．The logic section in the receiver then determines whether the signal controls power，volume or chan－ nel selection or recall．
If the received signal is a channel selection signal．the first entry goes into memory（where it is retained until the second signal is received－ 0.1 －second or 1 －week later）．When this second signal is received it becomes，in addition，the execute signal．So as soon as it is received the STAR circuitry generates the chan－ nel number and puts it on the TV screen， and the tuner switches to the proper channel．
The tuner switching procedure is a bit more complicated．When the second signal is received the circuitry determines whether it is a Band I，II．or III channel that has been selected（see STAR Fre－ quency Chart）and actuates the appro－ priate tuner switches．Then the tuner scans to its starting point and the counter is preloaded for the band that is in use． Next the tuner scans through the band while the counter compares the channel count until it matches the command sig－ nal．When this happens the scan is stop－ ped and afc is activiated to lock the tuner oscillator to the crystal reference oscilla－ tor and the selected channel appears on the screen．All this takes place in less than one second．
The channel selector uses a special cir－ cuit to convert the energy of a $6-\mathrm{MHz}$ crystal－controlled signal into every har－ monic that comes within the television band（ 101 MHz to 931 MHz ）．The tuner＇s local oscillator is referenced to the closest harmonic．For instance，the 17th harmonic for channel 2 or the 86th harmonic for channel 14．Other channels are selected by causing the tuner to sweep through the appropriate band－Ch． 15. 16．17．etc．for the uhf band．Pulses of energy are generated for each channel． continuing until the logic senses the cor－ rect pulse count for the desired channel． At this point，the tuner osillator is located by an afc channel to the desired harmonic until a new command is received．The command is also placed into a memory

FIG．5－THE COMB GENERATOR uses a step－recovery－diode driven from a 24－or a $6-\mathrm{MHz}$ signal． as an electronics troubleshooter in Bell \mathcal{E} Howell Schools' fascinating learn-at-home program that

You may already have some of the skills you need.

Most of us at one time or another have put a screwdriver, a pair of pliers or some other basic tool to work. Fixing a bicycle wheel, tightening a window latch, putting up a bookshelf, or what have you. But here's a thought.
Using these same simple tools as a starting point, you can develop the ability to put them to work for you in far more ways than you ever dreamed of. And Bell \mathcal{E} Howell Schools ${ }^{\text { }}$ fascinating home learning adventure in electronics will show you how.

These days when it seems like there's an "electronic everything," it makes good sense to have occupational skills in the servicing and repair of such products as TV's and other home electronic equipment. If you're a person who recognizes a future in this field, Bell६ Howell Schools is ready to help you develop the specialized ability you need to become an electronics troubleshooter. While no assurance of income or employment can be offered, we can assure you that no better at-home training in electronics is available anywhere.

We have an exciting way for you to pick up these specialized skills in your spare time.

Don't think for a moment that we want you to spend your off-hours just reading a bunch of "how-to" books. That would bore anyone after awhile. What we at Bell \& Howell Schools offer is the modern way to learn ... a very different approach from the way you've been used to.
includes building and experimenting with the new generation color TV.

First of all, we believe that when you're exploring a field as fascinating as electronics, reading about it is just not enough. That's why throughout this learning adventure you'll get lots of "hands on" experience with some of the latest electronic training tools available today. You'll test and experiment with them and gain exciting new skills all along the way.

Although we cannot offer assurance of income opportunities, once you've completed this program a number of directions are open to you:

1. Use your training to seek out a job in the electronics industry.
2. Use your training to upgrade your current job.
3. Use your training as a foundation for advanced programs in electronics.

No electronics background

necessary.

That's one of the many attractions of this program. We start you off with the basics and help you work your way up one step at a time. As a matter of fact, with your very first lesson you receive a special Lab Starter Kit to give you immediate working experience on equipment as you are picking up the fundamentals.

It makes the learning process faster and certainly a lot more interesting.

You'll build and perform exciting experiments with Bell \mathcal{E} Howell's ElectroLab ${ }^{*}$ electronics training system.

You build the Electro-Lab step-by-step, too. First, the design console. After you assemble it, you'll be able to set up and examine circuits without having to solder them in place.

Next, you'll enjoy building a digital multimeter This important instrument measures voltage, current and resistance and displays its findings in big, clear numbers like on a digital clock. Far easier to read than "needle pointer" meters.

Then comes the solid-state "triggered sweep" oscilloscope which is similar in principle to the kind used in hospital operating rooms to monitor heartbeats. You'll use it to analyze tiny integrated circuits. The "triggered sweep" feature locks in signals for easier observation.

Channed numbers that flash on the screen

On-screen digital dock

to home entertainment.
You'll probe into the technology behind all-electronic tuning and into the digital circuitry of channel numbers that appear big and clear, right on the screen! You'll also build-in a remarkable on-the-screen digital clock, that will flash the time in hours, minutes and seconds. Your new skills will enable you to program a special automatic channel selector to skip over "dead" channels and go directly to the channels of your choice. You'll also gain a better understanding of the exceptional color clarity of the Black Matrix picture tube, as well as a working knowledge of "state of the art" integrated circuitry and the 100% solid-state chassis. Having actualiy built and experimented with this TV, you'll come away equipped with the kinds of skills that could put you ahead of the field in electronics know-how.

We try to give more personal

 attention than other learn-at-home programs.1. Toll-free phone-in assistance. The program is designed so that you can proceed through it smoothly, step-bystep. However, should you ever run into a rough spot, we'll be there to help. Many schools make you mail in all your questions. We have a toll-free line you can call when you have a question that can twait.
2. In-person "help sessions." These are held in 50 major cities at various times throughout the year where you can talk shop with your instructors and fellow students.

Why wait?
Find out more on how you can pick up new skills in electronics troubleshooting as you work with Bell ε Howell's new generation color TV: You've got the tools to do it!

Mail the postage-paid card today for full details, free!

Taken for vocational purposes, this program is approved by the state approval agency for Veterans Benefits.

If card has been removed, please write to:
An Electronics Home Sludy School DEVRV INSTITUTE OF TECHIDLOGY

4141 Eelmont. Chicago, llinols 60641

When a channel is selected, it is identified by an "on screen" display which presents the channel number in the upper left hand corner of the screen. This fades within a few seconds but may be recalled at any time by depressing the recall button.
The STAR system incorporates three principal subsystems to provide these functions: one for tuning: a second for
remote control; and the third for character generation. These share a single LSI chip (you can see it in the cover photo) containing the digital portions of all three of these subsystems. The analog portions are provided by a set of modules connecting with the LSI chip as shown in Fig. 1. The LSI chip used in the STAR system was developed by Mostek for Magnavox.

System operation

Data enters the system（see Fig．1） from the keyboard on the set or the re－ mote control．It is then separated into channel select or auxiliary functions by the data decoder．Channel－selection data is held in storage．It will program the character generator and the tuning sys－ tem to the selected channel．Auxiliary functions do not enter data storage，but are diverted by the data decoder to the auxiliary function outputs．
In the STAR system a varactor tuner is used．Here．voltage variable capacitors （Varicaps）make possible the use of the voltage tuning in place of mechanical tuning．This tuning voltage is generated by al frequency synthesizer．

FIG． 7 －FREQUENCY SYNTHESIZER is shown in block diagram form．This circuit develops the tuning voltage．

This synthesizer，（see Fig．7）uses a harmonic comb generator to produce spectral components spaced at 6 MHz intervals throughout the vhf and uhf bands（ see Fig．2）（a $4-\mathrm{MHz}$ comb is used when tuning channels 5 and 6）．The sys－ tem takes advantage of the fact that these harmonics fall $1-\mathrm{MHz}$ above the vhf and $1-\mathrm{MHz}$ below the uhf oscillator frequen－ cies．（see Table）．This harmonic spec－ trum is mixed with the output of the local oscillator（L．O．）（see Fig．3）．

A ramp voltage sweeps the oscillator across the band of interest．As the L．O． frequency passes $1-\mathrm{MHz}$ below and above each marker，a $1-\mathrm{MHz}$ beat（or birdie） is developed at the amplifier output（see Fig．4）A detector shapes these birdies into pulses that toggle flip－flop 1 （ FFI ）． Therefore，FF1 delivers a positive transi－ tion each time the L．O．passes through a frequency that corresponds to a TV channel．

By starting the oscillator from a given reference frequency and counting transi－ tions，it is possible to locate the oscilla－ tor at any desired channel．This number is controlled by programming a counter to stop the sweep when the required number of pulses have been counted．

Birdie counting is handled by a pro－ grammable down counter that is initially set to the channel number（see Fig．4）． FFI decrements this counter as the L．O． sweeps across the harmonic comb．A de－ coder that monitors the counter contents． stops the sweep when the count drops to a predetermined number．This sequence

CHANNEL	TUNER OSC	REF SIGNAL	HARMONIC OF REF
BAND I			
2 lo band vhf	101	101	17th
3	107	108	18
4	113	114	19
5	123	124	31＊
6	129	128	32.
BAND II			
7 hi band vhf	221	222	37
8	227	228	38
9	233	234	39
10	239	240	40
11	245	246	41
12	251	252	42
13	257	258	43
84 cable chan	173	174	29
85	179	180	30
86	185	186	31
87	191	192	32
88	197	198	33
89	203	204	34
90	209	210	35
91	215	216	36
BAND III			
14 uhf	517	516	86
15	523	522	87
	\downarrow	\downarrow	\downarrow
82	925	924	154
83	931	930	155

－Special reference frequency（ 4 MHz ）
is shown for Channels 2， 3 \＆ 4 in Fig． 3.
Let＇s assume that channel 4 has been selected．The counter is preset to＂ 4 ＂ and the L．O．positioned at a reference frequency located below the $102-\mathrm{MHz}$ marker．Next the L．O．is swept upwards， past the 102 and $108-\mathrm{MHz}$ markers．As these markers are passed，the resulting birdie pulses toggle FF1．It．in turn，steps the down counter down．When this counter state reach＂ 1 ＂，the decoder sig－ nals the ramp control logic to＂stop the ramp＂．The L．O．is now positioned at 113 MHz ，the L．O．frequency for Chan－ nel 4.
A similar sequence is used for Chan－ nels 2 and 3 ．Common to all of these are the following steps．

1．The down counter is always preset to the channel number．

2．The count decoder is programmed to stop the ramp when the counter contents reach＂ 1 ＂．

3．Flip－flop 1 （FF1）is preset so that positive output transitions occur only when the L．O．is $1-\mathrm{MHz}$ below a har－ monic marker．

4．The local oscillator（LO）is initially positioned at a reference frequency at the bottom of the band．This frequency acts as the starting point for that band．From this point all channels in this band are acquired．

To align the birdie count with the de－ sired channel，the L．O．must be positioned at the proper reference frequency before counting starts．Since each band has a dif－ ference，these frequencies could be gen－ erated by three independent oscillators， one for each band．However，there is a simpler solution．It calls for only one oscillator and we use the harmonics of that oscillator for reference．This way we use a $24-\mathrm{MHz}$ signal as the prime signal． The fourth harmonic， 96 MHz ，is used for Band I（Channels 2． 3 \＆4）．（Chan－
nels 5 \＆ 6 are also in Band 1，but are a special case and are described later．）For Band II（Channels 7 thru 13 and 84 thru 91）the seventh harmonic is used．For Band Ill the 22nd harmonic． 528 MHz ， is the reference（Channels 14 to 83）． These harmonics，as well as the $6-\mathrm{MHz}$ harmonics used for birdie counting，are all derived from the comb generator．

Comb generator

This circuit uses（see Fig．5）a step recovery diode（SRD）that is driven from either a 24 －or $6-\mathrm{MHz}$ signal．The SRD enriches the harmonic content of these signals，to create the harmonic comb．The $6-\mathrm{MHz}$ signal，derived by dividing $24-\mathrm{MHz}$ by 4 ，drives the SRD during birdie counting．Prior to counting， the $S R D$ is driven from the $24-\mathrm{MHz}$ sig－ nal to produce the starting comb．The SRD is connected to the 6 －or $24-\mathrm{MHz}$ source through electronic switch S1．this switch is controlled by a signal called the starting comb enable（SC）．When SC is high，S1 connects the SRD to the $24-\mathrm{MHz}$ source to generate the starting comb． When SC is low，S1 connects the SRD to the divider output to generate the $6-\mathrm{MHz}$ comb used for counting．

The various processes just described are elements of the channel acquisition sequence which is initiated whenever a new channel is selected．

To start this sequence，a $24-\mathrm{MHz}$ comb is initially generated and the VCO is pro－ grammed to a frequency midway between the comb harmonics．This is done by a comparator which servos the ramp into the starting position．Having established this position，the VCO ramp then sweeps downwards until the first $24-\mathrm{MHz}$ comb is reached．Upon contacting this comb， the ramp is reversed and the $24-\mathrm{MHz}$ comb is replaced by a $6-\mathrm{MHz}$ comb．
（contintued on page 88）

Using COSMOS Digital IC's

> Here are 9 more COSMOS projects for you to look over. By building these simple circuits yourself, you can learn about COSMOS solid-state technology. The projects are also useful as well as educational.

by R. M. MARSTON

in the first three parts of This series we looked at the basic operating principles of cosmos digital IC's, and went on to explore a variety of ways of using the CD4001 quad 2 -input Nor gate logic, inverter, gate and multivibrator applications. In this fourth part of the series we look at ways of using the CD4001 in lamp flasher, time-delay, oscillator and alarm projects.

Lamp-flasher circuits

Figure 32 shows how one half of a CD4001 IC can be used in conjunction with a couple of transistors to make a simple lamp-flasher circuit that drives a low-power lamp on and off for equal periods at a rate of roughly 1.5 seconds per cycle.

Here, one half of the CD4001 is wired as a gated astable multivrator, with its output feeding to the lamp via Q1 and Q2. When S 1 is open, the astable circuit is disabled and its output is high, so zero base drive is applied to Q 1 , which is thus cut off: Since Q1 is cut off, zero base drive is applied to Q2, which is also cut off: There is no current flow in lamp LP1 under this condition. Note that the circuit draws virtually zero current in this state, so the supply does not need to be disconnected when the circuit is in this "standby' mode.

When S1 is closed, the astable circuit is enabled, and its output switches alternately between zero and the full positive supply voltage at a rate of roughly 1.5
thousand ohms to thousands of megohms, to give any required flashing period.

This lamp-flasher circuit has a duty cycle or mark-space ratio of approximately $1: 1$, so the lamp turns on and off for approximately equal times.

Figure 33 shows how the circuit can be modified to give a programmed duty cycle so that, for example, the lamp turns on for a single period of only 0.75 sec onds in each 8.25 second cycle, thus giv-
ing a $1: 10$ duty cycle and giving considerable current economy as an emergency lamp flasher. The on time of the lamp is controlled by R1 and D1, and is fixed at about 0.75 seconds, but the off time is controlled by R2 and D2, and can be varied over a wide range. When $R 2$ is given a value of 1 megohm, the lamp has an off time of 0.75 seconds, and when R2 has a value of 10 megohms, the off time is about 7.5 seconds. The value

FIG. 32-SIMPLE LAMP FLASHER. One IC and a couple of transistors are the active components.

FIG. 33-PROGRAMMED-DUTY-CYCLE lamp flasher.

FIG．34－AUTO－TURN－OFF RELAY time switch．

FIG．35－DELAYED－TURN－ON relay time switch．

FIG．36－CODE PRACTICE OSCILLATOR．
of R2 can be varied from a few thousand ohms to thousands of megohms，as re－ quired，to give any desired off time．

Note that the circuits in Figs． 32 and 33 are both designed to work from a 12 － volt supply，and that lamp LPI can be any 12 －volt type with a current rating up 10200 mA ．Lamps with higher current ratings can be used if a suitably rated power transistor is used for Q2．

Time－delay circuits

COSMOS digital IC＇s are ideally suited for use in relay－driving time－delay appli－ cations，since they draw virtually zero standby current and have near－infinite input impedances．Figure 34 shows the practical circuit of a Cosmos auto－turn－off relay time switch，in which the relay turns on as soon as start button S 1 is momentarily closed，but turns off again automatically after a pre－set period．The
delay period can readily be varied from a fraction of a second to about fifteen minutes by selecting the value of Cl ．

The operation of the circuit is quite simple．One half of the IC is wired as a gated monostable multivibrator，with its output feeding to the relay via Q1．When the circuit is in its quiescent state，the outpus of the monostable is low，so zero base drive is applied to Q1，and Q1 and the relay are off．The circuit draws vir－ tually zero current under this condition． When S1 is momentarily closed，the monostable fires，and its output goes high and drives $Q 1$ and the relay fully on： After a pre－set period，the monostable completes its period and its output auto－ matically goes low again，so Q1 and the relay turn off and the circuit current falls to near－zero again．

The circuit gives a period of roughly 1 second per $\mu \mathrm{F}$ of Cl value．Thus，if Cl
has a value of $10 \mu \mathrm{~F}$ ，the delay is $10 \mathrm{sec}-$ onds，and if Cl has a value of $1000 \mu \mathrm{~F}$ ， the delay is in excess of 15 minutes．

Figure 35 shows how one of the four gates of a CD400I IC can be used to make a delayed－turn－on relay time switch， in which the relay does not turn on until a pre－set time after $S 1$ is closed．Note that the gate is connected as a simple in－ verter．Circuit operation is as follows．

When S 1 is first closed， Cl is fully dis－ charged，so at this moment the R1－R2 junction is effectively shorted to ground． Consequently，the output of the inverter－ connected gate is at full positive supply voltage under this condition，and Q1 and the relay are cut off．Shortly after SI closes，C1 starts to charge up via R1，and an exponential rising voltage is applied to the input of the gate．

Eventually，after a pre－set period，this voltage rises to the transfer voltage value of the gate，and at this point the output of the gate switches into the low or grounded state and drives Q1 and the relay on．The relay then remains on until S_{1} is opened again，at which point Cl discharges rapidly via $R 2$ and built－in input protection diode D1（see Fig．7－b in the September 1974 issue）of the gate． The operating sequence is then complete．

Precise delay period circuit depends on the values of R1 and C1，and on the value of transfer voltage of the particular CD4001 IC that is used．When R1 is 2.2 megohms，as in the diagram，a delay of roughly 1 second is available per $\mu \mathrm{F}$ of Cl．A delay or roughly 10 seconds can thus be obtained by giving Cl a value of $10 \mu \mathrm{~F}$ ，and a delay in excess of 15 min － utes can be obtained by giving Cl a value of $1000 \mu \mathrm{~F}$ ．

Note that the circuits of both Figs． 34 and 35 are designed to operate from 12－ volt supplies，and that the relays used can be any 12 volt types having coil resist－ ances of 180 ohms or greater．

Finally，note that the timing capacitors （C1）used in these two circuits must have leakage impedances greater than 5 megohms if the circuits are to operate correctly．

Oscillator and alarm generator

The CD4001 IC can be used in a variety of audible－output oscillator and alarm－call generator circuits．Figure 36， for example，shows how the IC can be used as an efficient Morse－code practice oscillator．Here，gates 1 and 2 are wired as a variable－frequency gated astable multivibrator，which can be turned on and off via the Morse key．The output of the astable is taken to a set of high－im－ pedance phones via gate 3 ，which is con－ nected as a simple inverter． R 4 resistor is a volume control．

Normally，when the key is open，the oscillator is disabled and the output of gate 3 is at ground potential，so virtually zero current flows through the circuit under this condition．In fact，the standby current is typically of the order of .004 $\mu \mathrm{A}$ ，which is less than the normal leak－ age current of a supply battery，so there is no need to wire an ON－OFF switch into the supply leads．

When the key is closed，the astable circuit is enabled，and a square－wave sig－

FIG. 37-LOW-POWER ALARM GENERATOR operates at 800 Hz .

FIG. 38-MEDIUM-POWER (0.25 W to 11.25 W) alarm generator.

FIG. 39-HIGH POWER (18W) alarm generator.

FIG. 40-PULSED LOW-POWER alarm generator.
nal is applied to the phones via R4. The frequency of oscillation can be varied between 300 Hz and 3 kHz via R1, which acts as a tone control, and the peak amplitude of the phones signal can be varied between zero and the full supply voltage via R4. Note that a short circuit can be placed directly across the output of the device without causirg damage to the I.C. The circuit can operate from
any supply in the range of 5 to 15 volts.
Figure 37 shows how the CD4001 can be connected for use as a low-level fixed frequency alarm-call generator circuit. Here, gates 1 and 2 are wired as a gated astable multivibrator that operates at approximately 800 Hz , and the output of the astable is connected to switching transistor Q1 via R3. Q1 uses the speaker and limiting resistor R_{x} as its collector load.

The action of the circuit is such that Q1 is driven alternately on and off at a frequency of 800 Hz when SI is closed, so drive current is pulsed into the speaker under this condition. The speaker and limiting resistor R_{x} should have a total series resistance of 100 ohms. The available acoustic output power of the circuit depends on the value of supply voltage used, and on the impedance of the speaker. Using a 9 -volt supply, the mean output current is fixed at about 40 mA , so the output power to a $15-\mathrm{ohm}$ speaker is about 25 mW , and to a $100-\mathrm{hm}$ speaker is about 160 mW .

The output power of the circuit can be boosted to a higher level by modifying the design as shown in Fig. 38. Here, the output of Q1 is used to provide base current drive to output power transistors Q2, which uses the speaker as its collector load. The speaker can have any impedance in the range 5 to 25 ohms, and the supply can have any voltage in the range 5 to 15 volts. The actual output power of the circuit depends on the combination of supply voltage and speaker impedance that is used, and ranges from 250 mW when a 25 -ohm speaker is used with a 5 -volt supply, to 11.25 watts when a 5 -ohm speaker is used with a 15 volt supply.

The output power can be boosted to about 18 watts by further modifying the circuit as shown in Fig. 39. Here, transistors Q2 and Q3 are super-alpha connected to give high gain, and the circuit is designed to operate from a fixed 15 -volt supply and to use a 3 -ohm speaker.

Note that protection diodes are wired across the speakers in Figs. 38 and 39. These diodes are used to prevent the collector voltages of the output transistors from swinging above the supply voltage as the inductive speaker loads are pulsed with current. The diodes must have current ratings of at least 1 amp in the Fig. 38 circuit, and of at least 3 amps in the circuit in Fig. 39. Also note that the Fig. 38 circuit passes a typical standby current of about $10 \mu \mathrm{~A}$, and the Fig. 39 circuit passes a standby current of about $30 \mu \mathrm{~A}$, due to the leakage currents of the transistors used.
The three alarm-generator circuits that we have looked at so far each produce a fixed or monotone output which is, by definition, monotonous to listen to. A more attractive and attention-catching sound is made by the basic pulsed lowpower alarm generator circuit of Fig. 40.

Here, gates 1 and 2 are wired as a fixed-frequency astable multivibrator that operates at a frequency of about 6 Hz , and gates 3 and 4 are wired as a gated $800-\mathrm{Hz}$ fixed-frequency oscillator. The $800-\mathrm{Hz}$ oscillator is gated on and of via the $6-\mathrm{Hz}$ oscillator, and its output feeds to the speaker via Q1 and $\mathrm{R}_{\mathbf{2}}$. The circuit can be operated from any supply in the range 5 tol 5 volts, and can be turned on and off via switch SI.

In this fourth part of the series, we have looked at different ways of using the CD4001 in lamp flasher, time-delay. oscillator and alarm projects.

Next month we will conclude the alarm projects and show you different electronic alarm control circuits.

R-E

HOW IT WORKS IC MOS shift registers

Do you know what a MOS shift register is？Do you know how it works？Here are the answers plus how to interface them with other logic families and different applications

by DON LANCASTER

A SHIFT REGISTER IS A DIGITAL DATA STOR－ age device．The data can be the letters to be displayed on a TV screen，numbers in a computer or calculator，intermediate values in a digital filter，or part of an elaborate code or sequence．Shift registers are made up of individual stages．Each stage can store one bit of information， called a binary 1 or a 0 ，and usually corresponding to a＂yes＂or＂no＂or else perhaps a＂present＂or＂absent＂com－ mand．Four bits together can represent a decimal number，while six bits together can handle one ASCII character，and so on．In a shift register，the contents can be moved or shifted so that the contained information is marched one and only one stage at a time through the device． The shifting process is called clocking and one or more clocks are involved in com－ pleting the shifting operation．

Figure 1 shows how we might make a shift register out of either a JK or type－D flip－flop．While TTL（Transistor－Trans－ istor logic）devices are shown，we could use any logic family we like．Input data corresponding to a＂ 1 ＂or＂ 0 ＂is pre－ sented to the first stage．When the system is clocked，the first bit of data is cmtered and then stored in the first stage．On the second clocking，the contents of the first stage get passed on to the second，and the first stage then accepts a new bit of information from the input．The next clocking passes the output of stage 2 on to stage 3 ，and the output of stage 1 on to stage 2．Finally，stage 1 accepts a new bit of input information．

One more clocking fills the register in Fig． 1 as it is only four bits long，and all four stages now have information in them．If we do no more clocking，the register will keep the information we sent it．Four more clocking pulses and we can march the data out and use it somewhere else．

So what good is a shift register？We can use it to store information．It is a digital memory．We can use it to delay information．We can use it to format information，either in a buffer mode where the enter and readout clock rates may be different，or in a variable－access mode where we can enter and leave in－ dividual stages with data．With certain types of shift registers，we can convert serial data to parallel form or parallel data（all at once）to serial（one at a time in sequence）form．We can also build counters and sequencers with shift reg－ isters．Two popular types are called the
walking ring computer and the pseudo random sequence generator．

Organization

The organization of a shift register is decided by how many stages it has and how you can get at the individual stages．

A serial－in－serial－out register gives you the input only to the first stage and the final output of the last stage．it is some－ times called a serial register or a SISO （Serial－in－Serial－Out）register．There is no intermediate access．

A SIPO register gives you the outputs of all stages including the last one．The eight－bit 74164 is a typical TTL example． A parallel－in－serial－out or PISO register lets you simultaneously load all the stages but then marches the contents out as a serial－bit string．The TTI． 74165 is an eight－bit example of this type．

The most versatile type of shift reg． ister would be a PIPO（Parallel－In－Par－ allel－out）version．Here，you could load data either serially one bit at a time or＂broadside＂parallel．You could also get all the data out either in broadside parallel all－at－once form，or one bit at a time in serial form．The 74195 is a four－ bit TTL package that does this．

You might think that since you could use the PIPO register for everything else anyway that it would be the only way to go．The problem is that you can easily put 2048 shift register stages on a single small chip of silicon．For a 2048－bit PIPO register，you＇d need a minimum of 4099 leads for inputs，outputs，clocks， and power supplies．This is a most un－ wieldy package to say the least，even if we don＇t worry about the extra circuitry needed for each parallel input．Now the same register can be done SISO in as little as 5 leads．

So，for short shift register applications， we have a choice of the four formats． For long shift register uses，the only eco－ nomical way to go is the SISO route． We＇ll consider everything longer than 24 bits a long shift register here．This is often a changeover point． 24 bits or less and you usually use the more flexible and faster TTL registers，often at four or eight stages per package．Above 25 bits， you go to the long serial MOS registers and pick up as many as 2048 bits of storage in a single package．

The majority of registers shift only towards the output and are called shift right registers．A very few can also shift back towards the input and are called
bidirectional or shift－right－shift－left de－ vices．These are expensive and not nor－ mally available in long lengths．One trick you can do with a recirculating reg－ ister（more on this in a bit）is clock it rapidly ahead one stage less than its length，making it appear to back up one， rather than go forward all but one of its stages．

Two more things may enter into our register organization．We may have more than one shift register in a single package． One，two，and six registers per package are common．Usually，they have common clocking，but not always．For instance， the Signetics 2518 is a hex 32 －bit shift register；the 2519 is a hex 40 －bit version． Both have common clocking and a com－ mon enter／recirculate control．

You often use several shift registers in parallel．For instance，you might use four shift registers to individually handle each bit of a four－bit BCD or binary－ coded－decimal digit．Thus each clocking of the register array gets you a whole new decimal number，rather than only $1 / 4$ of it The four bits is sometimes called a word and sometimes a byte．Likewise， an alphanumeric character can be repre－ sented by a six bit ASCII character code． Here，we use six registers at once to give us one whole new character on each clocking．Of course，we have to make sure all the registers get clocked exactly alike，for if they didn＇t，all the data bits would be hopelessly scrambled．This is usually very easy to prevent．

A final feature of a shift register＇s organization is its recirculatibility．Some－ times we might like to look at the con－ tents of a shift register a bit at a time， and then return the information back into the same relative slots in the shift register for later use．This is called recirculation． Some sort of switching or selection must be provided if you are sometimes going to enter new data as opposed to recir－ culating old data．Some of the long MOS shift registers have an internal recirculate logic and are normally used if you need recirculation．We＇ll see in a minute that recirculation is essential for the dynamic registers if you are going to keep the data more than a fraction of a second． Figure 2 shows the logic needed to add an external recirculate to a shift register．

Long MOS shift registers

There＇s an incredible variety of long shift registers available using several dif－ erent MOS（Metal－Oxide－Semiconductor）

Why a Sylvania home training program may be

your best investment for a rewarding career in electronics

1 LEADER IN ELECTRONICS TRAINING

Over the years，Sylvania Resident Schools have trained thousands of men and women for key positions in the electronics field．Now，through Sylvania Home Training，you can receive the same high－quality career training at home．In your spare time While you hold your present job． Remember，this training is designed with one purpose in mind－to give you the background you need to land the electronics job you really want！

AUTOTEXT TEACHES YOU ELECTRONICS RAPIDLY， EASILY．

AUTOTEXT，offered exclusively by Sylvania，is the proven step－by－step method of home training that canhelp you learn the basics of electronics quickly and easily．

3 cassette system

This innovative learning－by－hearing approach is a special option that adds an extra dimension to AUTOTEXT．It＇s almost like having an instructor in your own home．As you play the cassette tapes，you＇ll have an instruc－ tor guiding you through your AUTOTEXT lessons．Explaining the material as you read it．Going over schematics with you，reinforcing the basic electricity and electronics study materials with you．Everything you need to know to get you started towards a highly regarded position as an electronics technician－all in an easy－to－understand，conversational tone．

For those already working in elec－ tronics or with previous training， Sylvania offers advanced courses． You can start on a higher level without wasting time on work you already know．

5
 PERSONAL SUPERVISION THROUGHOUT

All during your program of home study，your exams are reviewed and your questions are answered by Sylvania instructors who become per－ sonally involved in your efforts and help you over any＂rough spots＂that may develop．

（ hands－ON TRAINing

To give practical application to your studies，a variety of valuable kits are included in many programs．In Sylvania＇s Master TV／Radio Servicing Program，you will actually build and keep an all solid－state black and white TV set，and a color TV set．You also construct an oscilloscope which is yours to keep and use on the job．

7
 FCC LICENSE TRAINING－ MONEY BACK AGREEMENT

Take Sylvania＇s Communications Career Program－or enter with ad－ vanced standing and prepare im－ mediately for your 1st，2nd，or 3rd class FCC Radio Telephone License examinations．Our money－back agreement assures you of your money
back if you take，and fail to pass，the FCC examination taken within 6 months after completing the course．

－CONVENIENT PAYMENT PLANS

You get a selection of tuition plans． And，there are never any interest or finance charges

SEND ATtACHED POSTAGE PAID CARD TODAY！FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION！

Sylvania Technical Systems．Inc
If reply card is detached send this coupon

GTE SYLNANA

FIG. 1-b-A SHIFT REGISTER USING type D flip flops. The clocking pulses are derived from the circuitry inside the dotied lines.
technologies. These range from small 16 and 21 -bit versions up to 2048 -bit ones in a single package. A brief and more or less random listing is given in Table 1, while some of the more prominent manufacturers are listed in Table 11. The typical single-unit price varies from around $\$ 3$ to around $\$ 15$ per unit and typically runs well under a penny per bit for the longer versions. Some of these have shown up surplus (see back ads of Radio-Elec-
tronics) for as little as a quarter each for manufacturers seconds. Some of the seconds we tested from the back ads run around a 45% "completely useful" yield. All of these devices are serial-in-serialout. Typical maximum frequency of operation is 2 or 3 megahertz, although you get much better behavior at a 500 kHz or so rate.

Before you can use any long MOS shift register, you have to ask the fol-
lowing questions:

1. Is the register static or dynamic?
2. How do you interface it with TTL or other logic?
3. What kind of clock signals are needed and how many of them?
4. Can it recirculate by itself?
5. Does it have write or read enables that lets you combine it with more registers?
Let's take a look at these important concepts in a bit more detail.

Static versus dynamic

Figure 3 shows three different types of shift registers. Our registers of Figs. 1 and 3 -a used two flip-flops for storage. They will keep data so long as we apply supply power and are called static registers, or sometimes fully static registers.

Transformation of information in any shift register has to be a two-stage process or a two-phase process. On the beginning of a shift, information is transferred into some form of temporary storage. At the completion of a shift, the information is then sent to a final storage. In the case of Fig. 1-a, we have a master (temporary) and a slave (final) storage within each JK flip-flop's logic block. The reason for the necessity of two storage phases per shift is simple-try it with only one, and you get a wild, unchecked race through several stages instead of an orderly progression of one and only one complete stage per clocking.
We don't need a full flip-flop for some applications. Instead, we can use the temporary storage of a capacitor. So, Fig. 3-b shows us a dynamic shift register. The capacitor will hold information for us for a reasonably short time, but eventually the leakage will get to us and destroy the information in the cell. Capacitor storage is much simpler and more economical than flip-flops as it usually uses the "free" capacitance found in normay strays. Most dynamic MOS shift registers will hold their information for UP TO one-tenth of a second. Should you fail to clock them in that time, the information is lost.
So, if you are only going to keep your information in your shift register for under a fraction of a second before finally using it, it doesn't matter whether you use a static or a dynamic register. The trouble is that most applications call for data to be reused or held longer: than a fraction of a second. So, if you are to use the cheaper, denser dynamic shift registers, you have to move or refresh the data a minimum of several dozen times a second. One way to handle the moving of data is to march the information completely once around at least several dozen times per second. In a computer terminal or TV Typewriter, recirculation at the 60 hertz vertical rate is one good approach.

Figure $3-\mathrm{c}$ shows an interesting compromise between static and dynamic registers. Here, we use a capacitor for the temporary storage and a flip-flop for the final storage. This is a compromise that gives us static performance at slightly over half the normal cost. Strictly speaking, this is called a quasi-static operation, but practically all the "static" MOS reg-
isters use this technique．There is only one restriction，the clock lire must re－ main in a specified level during the static part of the operation，and there is a maximum allowable clock pulse width during the dynamic transfer process．

Interface

Most of the long MOS registers will interface with TTL，DTL，and RTL，but most often a few resistors are needed． You have to read the data sheets very carefully．Unless the data sheet specifi－ cally states otherwise，the clock lines are NOT compatible with TTI．and take spe－ cial drive circuitry．More on this in just a bit．Remember that the inputs，enables， recirculates，and output pins can be made rTL compatible．but the clock almost al ways takes special circuitry．

There are lots of different MOS tech－ nologies．and each takes one of the inter－ face circuits shown in Fig．4．You can usually tell the technology by the supply voltage used or recommended．

If the supplies are ± 15 volts，chances are it is a metal gate or high threshohl P channel device．These are the oldest MOS integrated circuits and the hardest to in－ terface．To drive them．you need an open circuit TTL logic block that can with－ stand 15 volts．Suitable devices are the 7406 and 7416．A pull－up resistor is pro－ vided to produce the ground and ± 15－ volt logic inputs．Two resistors are nor－ mally used in going from the MOS to TTL．one down to -15 to provide the -1.6 mA needed for a TTL＂ 0 ＂，and one series resistor to limit the positive swing to 5 volts or less．

Silicon gate circuits are presently the most common．They have $a+5$ and － 12 －volt supply．Usually a 2.2 K pull－up resistor is recommended when they are driven by TTL，and their output drive capability depends on the particular out－ put structure used．Often a single 6.8 K resistor to -12 volts does the trick

N－channel circuits often work with a single +5 －volt supply and are directly TTL compatible without resistors on out－ put and input．CMOS integrated circuits also work off a single +5 －to +15 －volt supply．At +5 volts，they are directly TTL compatible on an input，but may not have enough output drive current for regular TTL．so low－power TTL is often used as an output sense amplifier．

Its usually tricky to simultaneously drive another MOS stage along with TTL as the voltage and current swings don＇t usually work out too well．To get around this，you usually run through a single TTL inverter and use its output to drive the MOS following．

Clocks

More problems happen with long shift registers over clocks and clocking than over any other single difficulty．First and foremost，consult the individual data sheets for the device you are going to use． Unless it specifically says so otherwise （boldly and in large print！），the clock lines are not compatible with TTL．Usu－ ally the clock lines need almost the entire supply swing，such as a 16 －or 17 －volt swing for a silicon gate circuit on +5 ． － 12 －volt power supplies．Further，what－

IN

$\stackrel{1}{=}=$ ENTER
$+5 \mathrm{~V}=$ RECIRCULATE

FIG．2－RECIRCULATING SHIFT REGISTER． Data can be fed from the output to the input．

TABLE I
A FEW OF THE MORE POPULAR LONG MOS SHIFT REGISTERS

ELECTRONIC ARRAYS：

EA1003 Dual 32，static，rec． EA1004 Dual 100，static
EA1007 Dual 32，static
EA1 1200 Quad 32，dynamic
EA1203 Variable 1－64 dynamic
EA1210 Dual 526 dynamic
EA1212 Single 512 Dynamic

FAIRCHILD：

3325 Quad 64，Dynamic
3330480 Bit，Dynamic
3342 Quad 64，Static
3343 Dual 128，Static
3346 Dual 144，Static
3383 Single 256，Dynamic
INTEL：
1402 Quad 256，Dyn，Mpx． 1403 Dual 512，Dyn，Mpx． 1404 Single 1024，Dyn，Mpx． 1405 Single 512，Dyn，Recirc． 1506 Dual 100 dynamic 24012048 dynamic，recirc． 24051024 dynamic，recirc．

MOSTEK：

MK1002 Dual 128，Static MK1007 4×80 ，dynamic

MOTOROLA

MC1141G Triple 66 dynamic MC1142G Single 200 dynamic MC1160G dual 100 dynamic MC1161G Dual 50 bit static MC2360G Dual 100 Static MC2361G Dual 128 Static MC2362G Dual 250 Static MC2363G Dual 256 Static MC2380G Dual 100 dynamic

NATIONAL：

MM400 Dual 25 Dynamic
MM402 Dual 50 Dynamic
MM406 Dual 100 Dynamic MM4001 Dual 64 Dynamic
MM4006 Dual 100 Dynamic
MM4012 Dual 256 Dynamic
MM4013 Single 512，dyn，rec．
MM4105 Quad 64，static
MM5054 Dual 64／72／80 static

SIGNETICS：

2505 Single 512 dyn，rec．
2506 Dual 100，dynamic
2509 Dual 50 Static
2510 Dual 100 Static
2511 Dual 200 Static
2512 Single 1024，dyn，rec．
2518 Hex 32，static，rec．
2519 Hex 40，static，rec．
2521 Dual 128，static
2522 Dual 128，static
2524 Single 512，dyn，rec．
2525 Single 1024，dyn，rec．
2527 Dual 256 static
2528 Dual 250 Static
2529 Dual 240 Static
2532 Quad 80 static
25331024 static，rec．
TEXAS INSTRUMENTS：
TMS3000 Dual 25 static
TMS3001 Dual 32 static
TMS3002 Dual 50 static
TMS3012 Dual 128，stat，rec．
TMS3102 Dual 80，static
TMS3112 Hex 32，static，rec．
TMS3113 Dual 133 static，rec．
TMS3304 Triple 66，dynamic
TMS3309 Dual 512，dynamic
TMS3314 Triple $60+4$ dynamic
TMS3412 Single 1024 Dynamic

TABLE II

SOME LONG MOS SHIFT REGISTER SOURCES

ELECTRONIC ARRAYS INC．

501 Ellis Street
Mountain View，California 94040
FAIRCHILD SEMICONDUCTOR
464 Ellis Street
Mountain View，California 94040
INTEL CORPORATION
3065 Bowers Avenue
Santa Clara，California 95051
MOSTEK
1215 West Crosby Road
Carrolton，Texas 75006

MOTOROLA SEMICONDUCTOR
Box 20912
Phoenix，Arizona 85036
NATIONAL SEMICONDUCTOR
2900 Semiconductor Drive
Santa Clara，California 95051

SIGNETICS

811 East Arques Avenue
Sunnyvale，California 94086
TEXAS INSTRUMENTS
Box 5012
Dallas．Texas 75222
ever is driving the clock has to drive a bunch of internal switches in a long register, so the clock line capacitance may be several hundred picofarads. Since you need sharp rise and fall times on the clock, it usually takes a special circuit called a clock driver to get the job done, as the peak currents involved in charging and discharging the clock line capacitances may be several hundred milliamperes or more. Except for the simplest circuits, a push-pull "totem pole" drive circuit is needed, and a small current limiting resistor (usually 10 ohms) must be provided between the registers and clock lines to prevent short circuit damages and risetimes that raise havoc with the supply lines and decoupling. The clocks must NEVER be allowed to "overshoot" and exceed the positive supply voltage, even briefly for this will destroy or selectively change the information in the register. Clocks must be the proper widths and must not overlap. Where two clocks are used, the "daylight" or space between them is just as important as their widths.

As a general rule, always use clock widths near the minimum called for on the data sheets. With most registers, the wider the clock pulses, the more the supply current. and the hotter the IC runs, leading to potential temperature and bit pattern sensitivity problems. Clock widths should be precisely derived from system timing instead of randomly adjusted through monostables or half-monostable pulse shapers, since the position and widths can be quite critical.

On your first design with a new long MOS register, you also have to watch for the number of clocks needed per cycle. Generally static registers need a single clock and each clock pulse advances the information one stage. Static registers are also usually much easier to drive on their clock lines.

Most dynamic registers have two clock lines and need two clock drivers. One clock is the input clock; one is the output clock. A pair of clock pulses is needed to advance the information one stage.

Finally, there are a few dynamic multiplexed registers such as the Intel 1402. 1403 , and 1404. These are tricky and hard to use. They contain two internal shift registers with a common input and output. What is an input clock for one side is the output clock for the other half and vice versa. The data externally appears to travel one stage per clock pulse, although a pair of clock pulses is needed to complete each transfer operation. If you are not very careful, you can end up one clock pulse short or long of what you really need, and change the effective register length.

Note that any of these devices can have the clocks spaced out in time. They need not be continuous. They can be in bursts or random, so long as you don't exceed the minimum clock width and "daylight" spacing. and so long as you don't wait

FIG. 3 (top of page)-STATIC shift register. b) DYNAMIC shift register. c) QUASI-STATIC shift register.
FIG. 4 (botiom of page)-INTERFACING DIFFERENT MOS logic with TTL gates. The type of MOS logic can be identified by the supply requirements.

(a)

(b)

(c)

longer than the dropout time on a dynamic register. Outside of the capacitance you may have to charge and discharge rapidly, all of the inputs on any MOS integrated circuit are essentially open circuits and neither source nor sink current.

Enables

An enable pin lets you combine either the outputs or inputs of a shift register group without using any fancy selector switches or external logic. Output enables are sometimes called read enables. You can combine memories simply by shorting all the outputs together provided you enable only one circuit at a time. Two common types of enables are the open collector and the tri-state. The latter provides a " 1 ", a " 0 ", or a high-impedance open circuit on command. Write enables also exist, but only on a few of the long registers.

Applications

We only have enough room to quickly run down some obvious applications of long shift registers. Two important ones were shown in the TV Typewriter story (Radio-Electronics, September 1973). Six recirculating 512 -bit registers were used as a main memory character store and a final hex 32-bit shift register was used as a line register needed for formatting the dot matrix characters.

Pocket calculators and computers use long shift registers for number and program storage. Often, they are combined with internal multiplexing, calculation, and control circuitry into a single package.

Some music synthesizers use long shift registers as tune computers or composer storage. Several far out tricks that can be done with them is the separation of pitch and tempo, and the ability to play an upside down scale, or a reversed or backwards score. To reverse a shift register, you simply run it ahead $\mathrm{N}-1$ clock pulses as fast as you can go. For instance, a 512-bit shift register can be clocked ahead 511 bits in well under a millisecond, and it appears to have backed up one slot at the end of the burst.
. Long shift registers are ideal for sequence generation of noise that repeats for cryptography, computer security, music, and audio testing applications.

Long shift registers make good buffers or data concentrators. Input information can be loaded into a shift register at a random, slow, or asynchronous outsideworld rate and then transferred to the rest of your circuit later on synchronously at high speed.

You can build an electrically variable delay line out of long shift registers. The clocking controls the delay time independently of the input data frequencies. You can get a delay to risetime ratio of $500: 1$ out of a 1024 -bit register, something that's hard to do with analog delay lines. Speech compression (for talking book tapes and records), vibrato (for music synthesizers), and spectrum translation are three typical use examples.

In fancier circuits, shift registers are used as the key element in digital filters,
(continued on page 97)

New Concepts
 In FM Tuner Designs

New innovations in tuner design have come to light in recent years. These innovations include new frequency synthesis techniques, tuning indicators, noise blanking circuits and phase-locked-loop arrangements. Here's what these innovations can mean to you.

by LEN FELDMAN
CONTRIBUTING HIGH-FIDELITY EDITOR

the performance level of the typical all-in-one stereo hi-fi component receiver has improved remarkably over the last few years. Circuit refinements have been applied to both the amplifier sections and the FM tuner sections of the one-piece receiver, so that each of these sections now outperforms some of the better separate tuners and amplifiers of earlier years. There are receivers which boast continuous power outputs of 100 watts per channel and more at less than 0.1% total harmonic distortion-specifications previously associated only with separate integrated amplifiers or even separate basic power amplifiers. As for FM performance, it is not unusual to find integrated stereo FM receivers which offer ultimate signal-to-noise ratios well above 70 dB , distortion levels (even at 100% modulation) of below 0.25%, and stereo separation capabilities of well over $40-\mathrm{dB}$ at midfrequencies and better than $30-\mathrm{dB}$ over the entire audio range.

To "justify" the continued existence of the "separate" FM tuner, manufacturers of these relatively high-priced components have had to seek and develop improvements which extend beyond the commonly reported performance specifications and which offer operating convenience and simplicity to the prospective buyer that are not available in the popular all-in-one receiver component format. Typical of this new breed of FM tuner is Kenwood's new Model 700-T Frequency Synthesizing Tuner, shown in Fig. 1.

Tuning accuracy and distortion

Even the very best FM tuner which boasts low, low distortion can deliver its lowest THD figures only when the tuned circuits in the front end are precisely tuned to the center frequency of the desired station signal. Typical

FIG. 1-THE KENWOOD 700-T frequency synthesizing tuner.
values of distortion introduced by even minimal mis-tuning of frequency are illustrated in the graph of Fig. 2. As this graph illustrates, a mis-tuning of as little as 50 kHz can increase distortion in the output from 0.13% to 0.45% for monophonic signals. In stereo FM, the degradation of audio purity can be even greater.

Conventional tuners and receivers generally use center-of-channel tuning meters or other idicators as tuning aids. Often, such indicators are simply dc voltmeters hooked up to the take-off point of the FM ratio detector. In a properly aligned FM tuner. proper tuning should result in zero dc voltage at this point and the meter pointer is then centered. Even slight misalignment of the ratio detector or other
tuned circuits in the i.f. section of the tuner can cause the meter pointer to swing left or right of center and the user, relying upon this indication, would then deliberately mistune the set until the pointer returned to its mid-point. Even in a perfecly aligned system, detector bandwidth on modern tuners is so great that the tuning meter's range, from end to end, must extend over several hundred kHz , making the exact "center point" rather difficult to determine visually.

Frequency synthesizing

The idea of using a frequency synthesizing circuit for accurate FM tuning is not new. It first appeared in a consumer type tuner a few years ago when the Heath AJ-1510 tuner was introduced. That tuner was tuned with keyboard push-buttons and, therefore, required a great amount of digital circuitry beyond the relatively simple requirements of frequency synthesis. In addition, the AJ-1 510 tuner displayed tuned frequencies on digital read-out tubes, which also required a fair amount of digital drive circuitry.

Kenwood engineers, in designing the new 700-T decided that audiophiles

FIG. 2 - DISTORTION INCREASES RAPIDLY as FM station is deluned from exact center frequency.

prefer to select frequencies with a conventional tuning knob and to read those frequencies on a printed dial scale, and so the front panel layout of the new tuner is not unlike that of conventional tuners which use multi-section variable capacitors. What goes on behind the dial scale is quite different, however.

The block diagram of Fig. 3 shows the circuit elements of the rf front-end and the frequency synthesizer section. The front-end is quite conventional in that it includes two stages of tuned rf amplification, a mixer stage and a local oscillator. The local oscillator is tuned by varactor diodes, rather than the conventional variable capacitor. The dc voltage applied to the varactors determines their effective capacitance which, in turn, determines the frequency of the local oscillator.

The lower cluster of blocks in Fig.

3 represent the frequency synthesizer. First, the frequency of the local oscillator is divided by four through a $4: 1$ divider circuit. Thus, possible frequencies available at the output of the divider will range from 24.68 MHz to 29.68 MHz . (Local oscillators in FM sets are tuned to 10.7 MHz above the incoming frequency, so that the range of an FM local oscillator extends from 98.7 MHz to 118.7 MHz .)

The output of a crystal-controlled oscillator, tuned to 2 MHz , is divided in an 80:1 divider circuit to produce an accurate and constant output at 25 kHz . The outputs of both dividers are translated to narrow digital pulses. Both sets of pulses are applied to the two inputs of a comparator circuit. So long as there are exactly the prescribed number of pulses of divided-down local oscillator signal compared to a

FIG. 3-BLOCK DIAGRAM OF FRONT END and frequency synthesizer section of Kenwood 700-T tuner.

FIG. 4-CONVENTIONAL TUNING is continuous, se shown by doted linear sale. In Kenwood 700-T, tuning occure in fixed, 200 kHz increments as tuning knob is rotated.
single $25-\mathrm{kHz}$ pulse from the divided down $2-\mathrm{MHz}$ signal source, a prescribed value of dc voltage appears at the output of the phase comparator. If mistuning occurs, and the frequency or phase relationship changes between the two sets of pulses, the dc output of the comparator changes-not linearly, but in finite steps, as illustrated in Fig. 4.

The dc output of the comparator is amplified by a dc amplifier and the resulting de voltage is used to "tune" the local oscillator in the front end. This concept of discrete steps of voltage rather than continuously variable tuning voltage is what makes this electron-
ically tuned system different from other varactor-tuned FM sets. It is very much analogous to the "phase-lockloop" concept used in the multiplex sections of this and other tuners, in that there is a finite "lock-in" range of the system. Essentially, if the local oscillator is tuned to less than $\pm 100 \mathrm{kHz}$ of the desired frequency, the system pulls the oscillator to exact desired center frequency. Once tuned beyond 100 kHz to either side of center, the stepped dc voltage forces the oscillator to jump in frequency to the next, discrete, FM channel frequency. Accuracy of tuning is dependent only upon the accuracy of the $2-\mathrm{MHz}$ crystal oscillator which is used to create the $25-\mathrm{kHz}$ reference pulses. That crystal is accurate enough to provide an overall tuning accuracy of 0.0024%. At a desired tuning frequency of 100 MHz , that means that the maximum error of tuning possible is 2.4 kHz , hardly enough to alter the distortion of the audio output signal by a measurable amount.

Tuning indicators

To provide the user with a positive indication of tuning accuracy, the 700T is equipped with a two-step muting and LED control unit (not shown in the block diagram of Fig. 3). This circuit receives inputs from the frequency synthesizer as well as from a special noise-sensing circuit in the i.f. section of the tuner. Muting threshold is, therefore, dependent not only on signal strength (determined by signal noise content), but on accuracy of tuning as well. The three LED indicators seen at the right of the signal strength meter in Fig. 1 light when a station signal is received, with the outermost, red colored ones denoting a mistuning of 100 kHz and the center green indicator denoting perfect, on-center tuning.

Noise blanking circuit

Another novel circuit designed into the 700-T tuner is called PNBS (Pulse Noise Blanking System). Its purpose is to substantially reduce the audible effects of noise pulses which might be generated by man-made interference such as motor ignition noises. A block diagram illustrating the operation of this circuit is in Fig. 5. The noise amplifier and first comparator stage at the left of the diagram are fed a detected i.f. signal from the i.f. section of the tuner. The output of this first comparator is arranged to drive the other elements of the system so that in the presence of a weak signal (which might otherwise be interpreted as "noise pulses"), the main gating circuit in the audio amplifier stages permits the audio to come through.

FIG．6－APPEARANCE OF I．F．SIGNALS with and without pulse noise（ a, b and c ） and appearance of recovered audio with－ out（d）and with（e）PBNS circuitry．

At stronger signal levels，the real operation of the PNBS system comes into play．The FM noise amplifier feeds a diode switch which is now set to pass inputs from this source．The output of the switch is fed to a high－ pass filter which has a cutoff frequency of 150 kHz ．The noise pulses contain frequency components beyond 150 kHz and are，therefore，amplified and sent on to the second comparator which is in reality a form of pulse de－ tector．The resulting pulses are passed through an integrator where they are shaped into lower－frequency square
shaped dc pulses．These pulses are then applied to the final comparator and on to a dual gating circuit which is positioned between stages of the audio amplifier section of the tuner． When a shaped pulse is applied to this gating circuit，it effectively interrupts the passage of the audio signals for a very short time，thereby blocking the otherwise audible noise pulse．

The series of waveforms shown in Fig． 6 illustrates the appearance of the i．f．signal and the resultant audio．An i．f．signal without noise is represented by the upper waveform．Pulse noise alters the waveform so that it appears as in the second diagram．Even though the limiter stages of the i．f．system re－ move the AM variations caused by the noise pulse，the constant－amplitude i．f． signal at the output of the limiters now contains frequency variations which correspond to the noise and which would ordinarily be detected by the ratio－detector as audible noise，as rep－ resented by the single sine wave（recov－ ered audio）shown next．The PNBS cir－ cuit has a＂smoothing＂effect on the audio waveform and，while it does not eliminate the＂break＂in the normal audio sinewave，the audible effects of this kind of smooth disparity in the waveform are far less annoying to the listener．

The various circuits involved in the PNBS section（and especially the high－ pass filter）introduce a time delay of a few microseconds．Thus，the gating voltage which finally＂turns off＂the gate circuit in the audio amplifier sec－ tion arrives a small fraction of a sec－ ond after the noise pulse arriving from the two outputs of the stereo decoder section．If this were not compensated
for，the audible noise pulse would ＂sneak through＂before the gating cir－ cuit was turned off．Accordingly，a time－delay circuit is introduced ahead of the audio amplifier section so that the arrival of the gate pulse coincides exactly with the arrival of the noise pulse from the audio amplifier inputs to the gating circuit．

Other advanced features

Like other state－of－the－art FM tun－ ers currently available，the 700－T uses a phase－lock－loop circuit in its multi－ plex stereo section．In addition，the 38－ kHz switching circuitry used to de－ modulate the composite stereo signal into separate left and right outputs consists of two， 180° phase displaced switching circuits，each fed with ap－ propriately phased audio composite signals．This arrangement tends to maintain better phase accuracy（and therefore better separation）at high audio frequencies and also reduces or cancels residual carrier products at the audio outputs of the system．Kenwood has been using this circuit in a variety of its products in the past，but this rep－ resents its first use in combination with a phase－lock－loop arrangement for maintaining the critical phase relation－ ship between the $19-\mathrm{kHz}$ pilot signal and the audio sub－carrier sidebands of the stereo composite signal．
The signal strength meter on the 700－T serves a second function．By de－ pressing a front panel button it is transformed into a multipath indicator meter，facilitating proper orientation of an FM antenna for least interfer－ ence from signal reflections．A pair of jacks at the back of the tuner per－ mit connection of an oscilloscope for visual observation（and correction）of multipath effects，thus permitting great－ er antenna orientation accuracy．

As for more familiar performance specifications，the 700－T attributes these to its unique circuit innovations．Har－ monic distortion is stated as 0.15% in mono and 0.25% in stereo．Quieting slope is so steep that with a signal input of only $1.8 \mu \mathrm{~V}, \mathrm{~S} / \mathrm{N}$（signal－to－noise） ratio is 40 dB while with only $200 \mu \mathrm{~V}$ of signal applied， S / N ratio is at least 73 dB ．The elaborate stereo decoder section provides 45 dB of channel sep－ aration at 1 kHz and maintains separa－ tion capability of at least 35 dB at 10 kHz ．

Obviously，one could buy a pretty good receiver for the $\$ 700.00$ selling price of the FM／AM tuner．But the hi－ fi audience is such that there will al－ ways be those willing to pay a pre－ mium price for that last bit of perfec－ tion and for the unique features built into a product such as Kenwood＇s 700－T．

DESIGNING AUDIO

> Feedback serves many useful purposes circuits it can be used to reduce frequency equalization. See how to
in audio circuits, feedrack is used in a variety of applications. It is applied around power amplifiers to reduce distortion while minimizing the output impedance to improve loudspeaker damping. Preamplifiers use feedback in tone control circuits to maintain proper equalization for tape and phono reproduction. It is these preamplifier applications that we will discuss here*.

Feedback equalization

Records and tapes are not recorded with a flat frequency response characteristic, that is, not all frequencies are recorded with equal amplitude. The amplitudes at the high-frequency end of the audio spectrum are recorded with a rising characteristic so that the recorded signal can override any noise present in the medium. Playback curves at this end of the audio spectrum must provide roll-off to conpensate for the emphasis in the recording process. This roll-off characteristic is called de-emphasis and it further improves the signal-to-noise ratio.

At the other end of the audio spectrum, the low-frequency signals are reduced in amplitude with respect to the mid-frequencies during the recording process, so the width of the record groove can be maintained within reasonable limits. The playback curve must emphasize the low frequencies.

The final factor affecting the frequency characteristics of the reproduced record or tape, is the playback cartridge or head. The widely used magnetic type of cartridge does not have an output with a linear relationship to the amplitude of the signal being reproduced. It is a velocitysensitive device in which the output voltage is proportional to the frequency of the signal.

Taking all these factors into account, the preamplifier must have the frequency response which is shown by curve A in Fig. 1. The overall output of the complete system, from record through playback will be linear only if the response is as shown. A straight

[^4]line approximation to curve A has heen drawn as curve B in Fig. 1.

Note that the curve has three distinct sections - two $6 d B /$ octave rolloffs starting at 50 and 2000 Hz , and a flat response between 500 and 2000 Hz . The total frequency response of curve B can be produced by the summation of three separate curves. One curve will have a 6 dB /octave rolloff starting at 50 Hz . The second curve will be a 6 dB /octave rise starting at 500 Hz . Finally, the third curve will be a 6 dB /octave roll-off starting at 2000 Hz . The algebraic addition of these three curves will produce the frequency response shown in curve B of Fig. 1.
of feedback applied around the circuit. This allows for 0 dB of feedback at 30 Hz and for more than the required 36 dB of feedback at 15 kHz . Since 40 dB is a voltage ratio of $100: 1$, the gain of the circuit without feedback must be greater than 100 . This is easily done with the two transistors shown in Fig. 2.

The next step is to design the R-C networks in the feedback loop. The voltage gain ($A_{v r}$) of the circuit shown in Fig. 2 is approximately equal to $\mathrm{Z}_{\mathrm{f}} / \mathrm{R}_{\mathrm{e} 1}$, because the forward gain is sizeable. Z_{r} is the impedance of the feedback loop. Substituting the actual impedance of the feedback loop for $\mathrm{Z}_{\text {, }}$ in the voltage gain equation yields:

Designing a circuit

The design procedure can proceed in several logical steps. First, there must be a minimum of about 40 dB
$A_{v f}=\frac{Z_{t}}{R_{e 1}}=$
$\frac{1+j 6.28 \mathrm{fR}(\mathrm{Cl}+\mathrm{C} 2)}{\left.\mathrm{j} 6.28 \mathrm{fCl} \mathrm{R}_{\mathrm{vi}} \mid 1+\mathrm{j} 6.28 \mathrm{fC} 2 \mathrm{R}\right]}$ Eq. 1

FIG. 1-PHONOGRAPH PLAYBACK CURVES when using a magnetic cartridge. Curve A shows the exact frequency response, while curve B is a straight line approximation of curve A.

FIG. 2-PHONOGRAPH PREAMPLIFIER circuit using feedback for equalization.

FEEDBACK CIRCUITS

in electronic devices．In audio

 distortion or provide proper design practical feedback circuits yourself
by MANNIE HOROWITZ

This follows from the fact that Z_{s} is equal to the reactance of Cl or $1 / \mathrm{j} 6.28 \mathrm{fCl}$ in addition to the im－ pedance of the parallel combination of R and $C 2$ or $R /(1+j 6.28 f C 2 R)$ ． In the equation， j indicates a 90° phase shift．

Equations in the form of Equation 1 can easily be analyzed to determine corner frequencies．（The corner fre－ quencies are those frequencies on the response curve where two straight line segments join．ie．，the corner frequen－ cies in Fig．I are 50，500，and 2000 Hz ）．To analyze Equation 1，all fac－ tors in the form of $(1+\mathrm{jx})$ are set equal to $(1+j)$ ．All other factors in－ cluding those terms in the form of jx are set equal to zero．Thus for the numerator；

$$
1+\mathrm{j} 6.28 \mathrm{fR}(\mathrm{Cl}+\mathrm{C} 2)=1+j
$$

Therefore； $6.28 \mathrm{fR}(\mathrm{C} 1+\mathrm{C} 2)=1$ ．Solv－ ing for f yields；

$$
f_{o 1}=1 / 6.28 \mathrm{R}(\mathrm{C} 1+\mathrm{C} 2) \quad \text { Eq. } 2
$$

f_{01} is one corner frequency．Similarly， the $(1+\mathrm{j})$ term in the denominator yields the second corner frequency，$f_{o z}$ ； $\mathrm{f}_{\mathrm{o} 3}=1 / 6.28 \mathrm{RC} 2 \quad$ Eq． 3. The third corner frequency，$f_{o s}$ ，is found by setting the $\mathrm{j} 6.28 \mathrm{fC} 1 \mathrm{R}_{\mathrm{e} 1}$ term equal to zero：

$$
f_{o 3}=0
$$

Eq． 4.
Now，substitute the actual corner frequencies noted in Fig． 1 for $f_{w, 1}$ ， $f_{o z}$ and $f_{o 3}$ ．Curves roll－off at a 6dB／ oct．rate，beginning at the corner fre－ quencies determined from the factors in the denominator of Equation 1. They rise at a $6 \mathrm{~dB} /$ oct．rate，begin－ ning at frequencies determined from the numerator．

Rolloff starts at $f_{o 3}=0-\mathrm{Hz}$ from Equation 4 and continues to $500-\mathrm{Hz}$ as determined from $f_{m 1}$ in Equation 2. It begins to roll－off again at $\mathrm{f}_{\mathrm{o} 2}=2000$ Hz ，as determined from Equation 3. The three equations can be solved simultaneously to determine the value of the various components．

You may justifiably ask why the rolloff begins at $0-\mathrm{Hz}$ rather than 50 Hz ．The basic design is simplified if this approximation is made．Actually， the coupling capacitor between stages in the forward circuit can be adjusted to move the corner frequency from 0 Hz to 50 Hz ．A more accurate circuit includes a resistor across C1 to readjust
the corner frequency to its proper location at 50 Hz ．

Tape equalization

A similar response curve may be derived for a tape playback preampli－ fier．A very rough approximation of the $71 / 2$－ips playback curve is shown in Fig．3．There are two corner fre－ quencies－one at 50 Hz and a second one at 3000 Hz ．Once again，the basic amplifier circuit in Fig． 2 can be used． However，we must substitute the series R－C circuit shown in Fig． 4 for the feedback network of C1，C2 and R in Fig．2．In the analysis，we let Z_{8} be the impedance of the $\mathrm{R}-\mathrm{C}$ circuit； Z_{8} $=\mathrm{R}+1 / \mathrm{j} 6.28 \mathrm{fC}=(\mathrm{j} 6.28 \mathrm{fRC}+1) /$ $j 6.28 f C$ ．Since the voltage gain with feedback is approximately Z_{ℓ} / R_{01} ； $A_{v \mathrm{r}}=(j 6.28 f R C+1) / j 6.28 R_{\text {ei }} \mathrm{fC}$ Eq． 5.
The roll－off in the response curve begins at the frequency where the de－ nominator is equal to zero．This occurs at；

$$
\mathbf{f}_{\mathrm{n} 1}=0 \mathrm{~Hz}
$$

Eq． 6

FIG．3－TAPE PLAYBACK CURVE showing a rough approximation of the equalization for $71 / 2 \mathrm{ips}$ ．

FIG．4－FEEDBACK NETWORK used for tape playback equalization．This network is used in place of R1，C1，and C2 in Fig． 2.

FIG．5－＂OPERATIONAL＂AMPLIFIER circuit using an FET．

The rise begins at $3000-\mathrm{Hz}$ or wher－ ever the numerator is equal to $j+1$ ． This frequency is；
$\mathrm{f}_{\mathrm{o} 3}=3000 \mathrm{~Hz}=1 / 6.28 \mathrm{RC}$ Eq． 7.
Once again，the $50-\mathrm{Hz}$ roll－off point must be treated as in the previous dis－ cussion of phono feedback equaliza－ tion．

Now，for the final and most im－ portant step in the design．Check the actual circuit in the laboratory and adjust the response curve using phys－ ical components．Too many stray factors are usually omitted in a＂paper＂ design for the calculated components to be sufficiently accurate．

Bipolar devices were used in this example，but JFET＇s can serve as equally well in these applications．In both instances，the first transistor stage must be designed so that there is a sufficient voltage swing at its output during the peaks in the music to pre－ vent clipping．A phonograph pre－ amplifier with about 3 or 4 mV input sensitivity for an average size signal， and that will accommodate 60 or 70 mV input signal before the output distorts，is satisfactory．A similar ratio of maximum to minimum input signal is required for the tape preamplifier， but the minimum input sensitivity in this case should be about 1 mV ．

＂Operational＂amplifier

The＂operational＂amplifier is usually associated with computer electronics． Actually，the circuit known as an＂op－ erational＂amplifier has been in use for many years as tone control circuits in high quality amplifiers．Because they are no more expensive or complex than the＂lossier＂type of base and treble，boost and cut controls，the feedback control is used almost ex－ clusively in all audio equipment．An－ alysis of the feedback control requires some knowledge of the characteristics of the＂operational＂amplifier．

An＂operational＂amplifier using an FET is shown in Fig．5．The dc gate bias for this stage is developed across \mathbf{R}_{*} and applied to the gate through \mathbf{R}_{6} ． Resistor R_{6} is made as large as prac－ tical so as not to affect any other parameters in the circuit．It is assumed that no ac－signal current flows through this resistor．

FIG. 6-BASS TONE CONTROL circuit using an operational amplifier and feedback.

FIG. 7-BASS CUT AND BOOST curves for circuit shown in Fig. 6 with tone control set at maximum positions.

FIG. 8-TREBLE TONE CONTROL circuit using an operational amplifier and feedback.

FREQUENCY (HERTZ)
FIG. 9-TREBLE CUT AND BOOST curves for circuit shown in Fig. 8 with tone control set at maximum positions.

The FET stage is an ordinary amplifier where the input signal will be amplified to produce an output voltage across \mathbf{R}_{11}. However, the actual signal generated, \mathbf{e}_{k}, is applied through \mathbf{R}_{k} to the amplifier. \mathbf{R}_{F} feeds the output signal back to the gate in a feedback circuit. In this circuit, C is considered to be a short circuit for audio signals and is designed into the circuit with the sole purpose of preventing the dc voltage at the drain from affecting the gate bias.

The signal current flowing through R_{b} is equal to ($e_{n}-e_{i n}$)/ R_{b}. This current divides between R_{G} and R_{r}. Since the current through \mathbf{R}_{G} and the gate circuit are negligible (due to their high impedance) when compared to the current flowing through R_{F}, we can with reasonable accuracy, assume that all the current flowing through R_{B} also flows through \mathbf{R}_{r}. The current in \mathbf{R}_{r} is equal to $\left(e_{\text {out }}-e_{i n}\right) / R_{r}$. Equating the current through R_{B} with the current through R_{F}, we have
$\left(e_{n}-e_{1 n}\right) / R_{B}=\left(e_{\text {obt }}-e_{1 n}\right) / R_{F}$ Eq. 8.
We can now write a second equation which considers the gain, A_{v}, of the amplifier stage itself.

$$
\begin{align*}
& \mathbf{e}_{\text {out }}=\mathbf{e}_{\text {in }} \mathbf{A}_{v} ; \\
& \mathbf{e}_{\text {in }}=\mathbf{e}_{\text {out }} / \mathbf{A}_{v}
\end{align*}
$$

The gain is usually extremely high and is often assumed to be infinite. When this assumption is made, $e_{\text {in }}$ approaches zero. Although $\mathbf{e}_{1 \mathrm{n}}$ is practically zero, the gate is not at ground potential. This point is referred to as a virtual ground.

Substituting $\mathrm{e}_{\mathrm{in}}=0$ into equation 9, we get the well known relationship $\mathbf{e}_{\text {out }} / \mathrm{e}_{\mathrm{n}}=\mathrm{R}_{\mathrm{r}} / \mathbf{R}_{\mathrm{B}}$ Eq. 10.
The ideal operational amplifier has six primary characteristics: 1. Infinite input impedance. 2. Zero output impedance. 3. Infinite gain. 4. Zero offset -zero output level when the input is zero. 5. Zero response time-instant response at the output when the input signal is applied. 6. Infinite bandwidth.

Obviously, no amplifier will fully meet any of these requirements. However. the closer the actual circuit approaches the ideal, the more accurate the calculations below will be.

Feedback tone controls

Let us now analyze a practical feedback tone control which is, in its completed form, known as the Baxendall tone control circuit. Start with the bass control section in Fig. 6. C1 and C4 are short circuits for the audio signals and are used only to prevent dc from entering the gate circuit. R1 is made equal to $R 3, C 2$ is equal to C3 and R2 is a linear potentiometer set at the center of rotation.

Compare Fig. 6 with Fig. 5. R1 plus the parallel combination of C 2 and the (continued on page 80)

1974 ANNUAL INDEX

JANUARY 1974—DECEMBER 1974

Abbreviations：（AC）Appliance Clinic；（C）Construction；（D）Department；（ER）Equipment Report；（GE）Guest Editorial； （F）Filler；（SC）Service Clinic

A

$A B C$＇s OI Sound Reinforcement（Koller）Aug 40 Active Bandpass Filter（Lancaster）May 40 Admiral M20 Chassis（F）Feb 58 Alarms

Installing Security Systems（Belt） Build An Electronic Security（Robbins）

All About Transformers（Waters
（C）
Apr 33

Appliance Clinic（Darr）（D）
Automatic Light Switches
Battery Chargers
Getting Replacement Parts
Ignition Problems－Small Engines
Limit Switches
Modular Appliances
Ni －Cad Charging Rates
Plug－In Refrigerator Analyzer
Solid－State Ignition－Lawnmower
Using The VOM Around The Car
Nov 24
Nov 24
Jul 72
Ocl 26
Aug 26
Aug 26
Feb 26
Feb 26
Mar 22
Mar 22
Jan 14
Sep 80
Aristotle And The Big Bottle（Darr）（SC）Feb 71
Audio－HI－Fi－Stereo
Amplifiers
Audio Feedback Circuits（Horowitz）
Design OTL Power Amplifiers（Horowitz） 68
How TO Mitar Preamp（Kay）Jun 36
How To Measure Hi－Fi Performance
（Feldman）
New FTC Audio Power Rules，the Sep 61 （Feldman）

Nov 61
BSR Metrotec FEW 1 Graphic Stereo
Equalizer（ER）
Feb 14
Direct－Coupled Audio Circuits（Horowitz）
Femtowatt－Here It Comes（Feldman）Jul 51
Getting To Know Hi－Fi Specs（Sessions）
Four－Channe！Sound
Build This 3－IC SO Decoder （Nichols）（C） Mar 39

CD－4 Records－T Promise（Feidman）Proms \＆The
Discrete With CD 4 Discs（Savon）Feb 42
Multiplexer For Logic Experiments Oct 36
（Corson）（F）
Record Review（Staff）
Software－Who Makes What？ （Maynard）

Feb 58

Lafayette SQ－W Decoder（ER）
Oct 50
Sep 66
New SO Generation，The（Feldman）
Newest CD－4 Demodulator， The（Feldman）

Jun 44
FM
Better Tuning（Feldman）Jui 48
High Quality FM Tuners（Felcman）Dec 63
New Tuner Circuits（Feldman）
May 37
i－FI Stereo－New Sound For TV（Feldman）
Improvements In Stereo Circuitry（Feldman） 45
Improving Room Acoustics（Challis）Mar 40
Improvements In Stereo Circuitry（Feldman）
Improving Room Acoustics（Challis）Man 42
Low－Noise Hi －Fi（Feldman）
Oct 57
R－C Coupling In Audio Circuits（Horowitz）
Selecting \＆Using Test Instruments（Scott）
Speakers
Avid Model 102 （ER）
Avid Panel
Aug 24 Schoengold）

Mar 36
Pioneer R500 Speaker System（ER）
Feb 47
Tape
How To Install Car Players（Craig）Mar 56 JVC CD－1668 Cassette Deck（ER）Jul 23 Rewind While You Listen（Cabot）（F）
Sony TC－15250 Portable Hi－Fi Cassette Recorder（ER）Jun 26
Technics RS－676US Dolby Cassette Recorder（ER）

Nov 26
Teat Instruments－see Test Instruments
Technics SL－ 1200 Direct Drive Turntable（ER）
Public Addrese－see Public Address Jul 22
Audio Crossword Puzzle（F）
Automatic Light Switches（Darr）（AC）Jan 52
Audio Feedback Circuits（Horowitz）Dec 66
Avid Model 102 Speaker System（ER）Aug 24

Burglar Alarms－see Alarms
catv

Troubles－How Tp Pin Them Down（Darr）	
	May 48
CB	
Alignment Made Easy（Mueller）	Jan 44
Casebook（Mueller）	Feb 48
New Circuits（Scott）	Jan 36
What＇s New in（Friedman）	Jan 24
сстV	
Casino，Electronic（Scott）	Mar 45，Apr 58
CD－4 Records－The Problems \＆The （Feldman）	Promise Feb 42
Circuits（D）Mar 87，May 88，	Jul 87，Aug

Color Oscillator－It＇s Easy To Know（Darr）（SC）
Color TV－see TV，Service
Color TV Picture，Getting It In Focus（Darr）（SC）

Computers	Apr 25
Bulld Improved ASCll Encoder	
（Lancaster）（C）	Feb 59
Commentary（Letters）	Dec 16
Computer！（Titus）（C）	Jul 29
First Terminal You Build From A Kit（Durston）	
	Nov 42
Modifications（Titus）	Dec 42
Construction－see Build	

D

Dead Stereo Tape Motor（Davidson）（F）Mar 44 Designing OTL Power Amplifiers（Horowitz）

Aug 48
Digital Equipment For Electronics（Darr）Nov 50
Digital Multimeters Under $\$ 300$（Scott）Nov 45 Direct－Coupled Audio Circuits（Horowitz）Jul 51 Does Servicing Have A Future（Adler）（GE）Sep 4

E

Easy To Mandle Epoxy（Queen）（F）
Sep 96 Editorial，guest

Does Servicing Have A Future？（Adler）Sep 4
Energy Crisis \＆Electronic Service（Couch）
May 4
Electronic Casino（Scott）（C）Mar 45，Apr 58 Electronic Logic For TV Tuning Mar 88 11 Ways To Use Your Vectorscope（Middleton）
Energy Crisis \＆Electronic Service（Couch）May 4

F

Femtowatt－Here it Comes（Feldman）Apr 50
First Computer Terminal You Build From A Kit （Durston）
FM－see listing under Audio
FM Slereo－see Audio
FM Tuners－see Audio
Flyback Transformer，The（Darr）（SC）Ocl 69 Four Channel－see listing under Audio 4－Channel Record Reviews（Staff） Oct 90 4－Channel Multiplexer（Corson）（F）Feb 58 4－Channel Software－Who Makes What（Maynard） 40 Projects Using COSMOS Digital IC＇s （Marston）（C）Sept 58，Oct 51，Nov 54，Dec 52

Getting To Know Hi－Fi Specs（Sessions）Mar 39
Getting To Know SCR＇s（Bixby）（C）Jul 42
Getting Replacement Parts（Darr）（AC）Oct 26
Gyrator，the－An IC Inductor（Leckerts）Feb 45

H

Heathkit IP－18 Power Supply（F）Sep 49 Heathkit New Digital TV（Steckler）Feb 33 Hewiett－Packard HP－970A Probe Muitimeter（ER）
Hewlett－Packard Oscilloscopes，Two（ER）Nov 63
Hickok 511 Wideband Triggered Scope Aug 47 Hi－Fi－see Audio
Hi－Fi Stereo－New Sound For TV（Feldman）
High Quality FM Tuners（Feldman）Dec 63
How It Works－Discrete 4－Channel With CD－4
Discs（Savon）Oct 36

How It Works－IC MOS Shift Registers
（Lancaster）
How To Install Car Tape Players（Craig）Mar 56
How To Measure Hi－Fi Amplifier Performance （Feldman）

IC＇s
Build A 3－Way IC Function Generator （Colman）（C）

Nov 100
How It W

（Lancaster） IC MOS Shift Registers

Dec 55
For Electronic Music（Lancaster）Feb 48A 40 Projects Using COSMOS Digital IC＇s （Marston）（C）
Sep 58，Oct 51，Nov 54，Dec 52

Sep 24, Oct 16, Nov 16, Dec 16
Light-Controlled Oscillator (Kimble) (F)
Limit Switches (Darr) (AC)
Line Operate Your LED's (McClellan) (F)
Liquid-Crystal Clock (C)
Feb 26
ruch) (D) Jan Mar 4, Apr 4 , May 6 Jan 4, Feb 4 Aug 4, Sep 6, Oct 4, Nov 4, Dec 4
Low-Noise Hi-Fi (Feldman)
Oct 57

M	
Many Roads To 4-Channel (Friedman)	Oct 39
Marconi-100th Anniversary (Leinwoll)	Apr
Matrix-Tube Purity Set-Up (F)	Ma
Master Antenna Systems-Where From (Belt)	
Mechanical Failure Short Circuits (Carlson) (F)	
Miniature Stroboscope (Devencenzi) (F)	
Modern Receiver Circuits (Moore)	
Modular Appliances (Darr) (AC)	
Music, Build a New Synthesizer Module (Simonton)	

N

New CB Circuits (Scolt)	Jan
New FM Tuner Circuits (Feldman)	May 37
New FTC Audio Power Rules, The	
(Feldman)	Nov 6

New In Car Electronics (Graf \& Whalen) May 45 New Literature (D) Jan 80, Feb 90, Mar 82, Apr 79, May 82, Jun 92, Jul 81, Aug 73;
New Opportunities For The Service
Technician (Steckler)

Sep 43
New Products (D) Jan 78, Feb 82, Mar 78, Apr 76, May 78, Jun 80, Jul 78, Aug 70, Sep 86, Oct 82, Nov 82, Dec 82
New SQ Generation, The (Feldman) Mar 33
New \& Timely (D) Jan 6, Fob 6, Mar 6, Apr 6, May 12, Jun 6, Jul 6, Aug 6, Sep 12, Oct 6, Nov 6, Dec 6 Newest CD-4 Demodulator (Feldman) Jun 44
Ni-Cad Charging Rates (Darr) (AC) Apr 22
1975 Color TV Circuits (Savon)
Dec 33

OTL Vertical Sweep (Darr) (SC)
Jan 65

P

Panel Speaker Designs (Grieg Schoengold)

Mar 36
Photography Build A Blitzmeter (Gupton) (C)
Build 200-Watt-Second Photoflash (Gupton) (C)

Nov 33
Plug-In Refrigerator (Darr)(AC) Jun 57
Poor Man's Binding Posts (F) Sep 49
Power-On Indicator (Liebman) (F)
Jul 88
Power-Supply Splitter For Dual Voltages (F) Jun 59
Projection TV In Your Livingroom (Steckler)

May 33
Proto Board By Continental Specialties (ER)

Sep 26
Put The Time On Your TV Screen
Sep 33

Radio
CB-see CB
Build Automatic Noise Eliminator (Wilson) (C)

May 51
Apr 46 Marconi-100th Anniversary (Leinwoll) Apr 46 R-C Coupling In Audio Circults (Horowitz) Oct 42 R-C Networks And Different Waveforms (Darr) (SC)
ov 69
Reader Question

Battery Charger-Current Rating
Blue Bow
Boost That Didn't, The
Broadcast Bars
Buzz On Overlay
Can't See Pips On Scope
Crawling Cathode Current
Crystals? Oscillator Or Filter
Electrolytic Blows
G-E M110YBG Hint
High-Voltage Problems
High-Voltage Protection Circuit High-Voltage Drop
How To Waste Dc Voltage
Horizonta! Stabilizer Coil Won't Work
Hum Bars From Transistor
IC I.F. With Problems
Ignition Noise
Intermittent Dark Spo
Intermittent Stereo
Jig Smear In Monitor TV
Local Station Blocks Radio
Loss Of Height
More On Many, Many Symptoms
Motorboating, Transistor Radio No Boost, No High Voltage
No Brightness Control
No Color
No High Voltage, Regulator Problem
No Raster, High Voltage OK
No Red
No Snow, That's Bad
Odd Colors
Odd Dark Spo
Odd Raster
Pilot Lights Out
Plate Voltage Missing
Plymouth Radio
Regaussing Coil, The
Replacement For 21HJ5
Replacement Transistor
Short Life Transistors
$60-\mathrm{Hz}$ Hum Bar
Slow Loss Of Stereo
Squiggles, Wiggles, No High Voltage Jan $90 B$
Squiggles, Wigg
Three Crawling Lines
Too Much Brightness
To Young Timer
Tuner Agc Voltage
Vertical Problems
Wet Car Ignition System
Jan 78

Repairing Cassette Recorders (McClellan) Mar 54
R-E's Service Clinic (Darr) (D)
Aristotle And The Big Bottle
Blanking Circuits
Color Oscillator-It's Easy To Know
Color TV Picture-Getting It In
Focus, The

Flyback Transformer; The
Feb 71

Apr 25

OTL Vertical Sweep
-C Networks And Different
Waveforms
Jan 65

Transistor, That Imprecise Device; The

Nov 69

Upgrading The Technician
Variac-A Handy Service Tool; The
VTR Problems Set Straight

May 58

R-E's Substitution Guide For Replacement
Transistors (Scott) Jan 62, Feb 68, Mar 60, Ch, May 58, Jun 62, Jul 62, Aug 62,
Rewind While You Listen (Cabot) (F) Jul 96

S

Security Systems see Alarms
Selecting \& Using HiFi Test Instruments (Scolt)

Jul 34
Semiconductors-also see IC's, see Trans istors Tunnel Diodes \& Circuits (Daniels) (C) Aug 52 Getting To Know SCR's (Bixby) (C)
Service-also see R-E's Service Clinic, Appliance Clinic, Reader Questions, Step-By-Step,
Technotes, Try This
Admiral M20 Chassis (F)
Feb 58
Benchtop Yoke Protector (F)
May 49
CB Alignment Made Easy (Mueller) Jan 44 CB Casebook (Mueller)
Dead Stereo Tape Motor (Davison) (F) Mar 44
Energy Crisis \& Electronic Service May 4 (Couch) (GE)
Does Servicing Have A Future?
(Adler) (GE)
Sep 4

11 Ways To Use Your Vectorscope (Middieton)

Oct 5
Mar 35
May 73
Mechanical Failure Shor Circuits (Carlson) (F)

Sep 43
New Opportunities For The Service Technician (Steckler)
Repairing Cassette Recorders (McCellan)

Mar 54
mple Scope Servicing (Darr)
Feb 57
Soldering Iron Cord Holder (Mitchell) (F)

Jul 73
Simpson 360 Digital VOM (ER) Oct 97
Slotted Mask Picture Tubes (Darr) Dec 41
Soldering Iron Cord Holder (Mitchell) (F) Jul 73
Solid State Ignition-
Lawnmower (Darr) (AC)
Dec 44
Sound Technology 1000A FM Generator (ER)

Aug 59
STAR-New Kind of TV Remote Control
Dec 44
Step-By-Step Troubleshooting Guide (Prentiss)
Agc or Misalignmen Feb 62
High-Voltage Regulator (Cunningham)
Horizontal Output RCA CTC35A
No Raster (Cunningham)
SCR Horizontal Outpul
Jul 60
Oct 60

Sync, Age \& Color llis
Oct 60
Jun 60
Waveform Apr 84
Stereo-see Audio
Synthesizer, Build a New Music (Simonton) Jun 53

T

Technical Topics (Scott) Jan 53, Mar 58, Aug 60
Technics RS-676US Dolby Cassette Recorder (ER)

Tov 26
Technics SL1200 Direct Drive
Turntable (ER) Jul 22
Technotes (D) Aug 86

Televislon-Iso see Service
$\begin{array}{ll}\text { Heathkit New Digital TV (Steckler) } & \text { Feb } 33 \\ 1975 \text { Color TV Circuits (Savon) } & \text { Dec } 33\end{array}$
1975 Color TV Circuits (Savon)
May 33
Put Livingroom (Steckler)
Dec 41
(Lancaster)(C)
Slotted-Mask Picture Tubes (Darr)
STAR-New Kind of TV Remote Control
TAR-New Kind of TV Remote Control (Steckler)

Dec 44
Test Equipment-see also Equipment Reports, Service
Build This Op-Amp Tester
(Prensky) (C)
Build 3-Way iC Function Generator (Colman) (C)
11 Ways To Use Your Vectorscope (Middleton)
Miniature Stroboscope (Devencenzi) Ocl 54
Selecting \& Using Hi-Fi Test
Instruments (Scott)
Jul 34
Simple Scope Servicing (Darr)
Feb 57
Digital Multimeters Under $\$ 300$ (Scott) Nov 45
Digital Instruments For Electronics (Darr)

Nov 50
Transformers, All About (Waters) Apr 43
Transistor, That Imprecise Device, The (Darr) (SC)

Sep 69
Translitors-see Semiconductore, IC's, R-E's Transistor Substitution Guide
Try This (D) Aug 75, Sep 97, Ocl 102
Tunnel Diodes-Theory \& Circuits
(Daniels) (C)
Aug 52
200-Watt-Second Photoflash (Gupton) (C) Nov $3 \sqrt{2}$

U

Understanding Caiculator IC's (Lancaster) Jul 38 Understanding MOS Character Generators (Lancaster)
Upgrading The Technician (Darr) (SC) Aug 65
Using the Vom Around The Car (Darr) (AC) Sep 80

v

Variac-A Handy Servicing Tool
(Darr) (SC)

May 58
Video Discs Are Coming, The (Lachenbruch)
Video Discs-Today \& Tomorrow (Petras) Jun 33
VTR Problems Set Straight (Darr) (SC) Mar 63

w

What is A ROM? (Lancaster) Feb 48E
What is A RAM? (Lancaster) Sep 50
What's New In CB (Friedman) Jan 24
Windshield Wiper Pause Control
(Baumgardt) (F) Jul 87 (Baumgardt) (F)

Jul 87
Sep 26
Winegard Cablemate CTS-1 (ER) Sep 26
Wire Grabber (Van Wormer) (F)
May 68

RE＇s Service Clinic

The orphan amplifier

How do you service without service data

by JACK DARR
SERVICE EDITOR

This column is for your service problems－TV，radio，audio or general and industrial electronics．We answer all questions individually by mail，free of charge and the more interesting ones will be printed here．

If you＇re really stuck，write us．We＇ll do our best to help you．Don＇t forget to enclose a stamped，self－addressed en－ velope．If return postage is not includ－ ed，we cannot process your question． Write：Service Editor，Radio－Electron－ ics， 200 Park Ave．South，N．Y． 10003.

FIG． 1
b

ONE PROBLEM WE RUN INTO TOO OFTEN is the little solid－state amplifier with the output transistors blown out．The tough part is the complete lack of any information；no schematic，no num－ bers，just nothing．So the only thing we can do is get in there and dig out the answers．

Before we start，let me make one thing perfectly clear．Due to the utter and complete lack of even rudimen－ tary standardization in these ampli－ fiers－transistor types，numbers and even circuits－the methods suggested here will definitely NOT apply to ALL of these amplifiers！About all we can do is point out a few＂trends＂ that seem to show up more often．Cer－ tain types seem to use certain circuits． We＇ll do our best to point these out．

If you have even a small，postage stamp size schematic，this will help． However，the ones we＇ll be talking about will be the little＂Orphan Im－ ports＂．Small record players，mono or stereo，no recognizable name or num－ bers．The amplifier（s）are often tucked away under the motorboard． They can be hard to find；l＇ve found a few by following the leads from the pickup．They＇re on PC boards，about 2 inches square．

For economy reasons，the vast majority of these use an output trans－ formerless（OTL）circuit．They use two transistors，in Class B，with the speaker connected to the mid－point
through a big electrolytic capacitor． （Big in capacitance，not physical size！）Note：In the Far Eastern im－ ports，the speaker is usually connected from the midpoint to common or ground．In European imports，partic－ ularly German，French and a few British，you may find the speaker hooked from midpoint to B＋．（Actual－ ly，this term should be $B \pm$ ，since the power supply can be of either polarity． However，the circuit works in exactly the same way．

There are two basic circuits．They work in exactly the same way；only the polarity of the transistors is dif－ ferent．One is called a＂stacked＂or totem－pole circuit，as shown in Fig． $1-\mathrm{a}$ ．The other is a＂complementary－ symmetry＂circuit，as in Fig．1－b．The stack circuit uses two identical transis－ tors，while the complementary－sym－ metry circuit uses transistors of op－ posite polarity．As far as we＇re con－ cerned，the only difference is in the driver stage．

Just to help keep things straight， let＇s define the transistors．From now on，the＂top＂transistor in the output pair is the one connected to the dc power supply，it can be of either polarity，depending on which type of transistor is used in the circuit．The bottom transistor is the one with its collector or emitter returned to com－ mon or ground．The driver may be connected to the base of either one，

Wolves in cheops clothing．

Design charlatans around the world have found a lucrative business in selling spurious replacement styli．And because Shure phono cartridges are asked for by more knowledgeable hi－fi enthusiasts than any other cartridges，our styli seem to be imitated more than any others．Now，flattery notwithstanding，Shure design engineers see red when they see these impostors，because they know that the performance of your Shure car－ tridge absolutely depends upon the genuine Shure stylus assembly－so to protect your investment and to in－ sure the original performance of your Shure cartridge，insist on the real thing：Look for the name SHURE on the stylus grip（as shown in the photo， left）and the words，＂This Stereo Dynetic ${ }^{\text {® }}$ stylus is precision manufac－ tured by Shure Brothers Inc．＂on the box．

[^5] （ ${ }^{\circ}$
it depends upon the manufacturer of the amplifier．

Questions，questions

We have a lot of questions to answer．Start with＂What type of transistors are（were！）these？npn or pnp？＂Make an ohmmeter check of the output transistors．This tells you which one is shorted or open．In many cases，you＇ll find that only one of the output pair has blown．This helps． Take the good one out and check it． Your ohmmeter will tell you its polar－ ity（see Table）．Take the bad one out． too．With a huge magnifying glass， see if there are any numbers on them． If these are the same，the chances are this is a stack circuit．If they differ， say by one digit（i．e．＂1439＂and ＂1440＂），the chances are that this is a complementary－symmetry circuit．If only one transistor is bad，you can tell which one goes where

In either type of circuit，the col－ lector of the top transistor goes direct－ ly to the power supply．To find the polarity of the voltage，take the shorted transistor out．turn on the amplifier，and read the voltage（max－ imum）．This determines the polarity of the top transistor．If the de voltage is positive，it＇s an npn transistor．If the de voltage is negative，its a pnp． Write down your two facts，de voltage

Everything you wanted to know about CD Ignition Systems but didn＇t know whom to ask．

Send for FREE Tiger booklet （20 pages）which answers all your questions
\qquad
－

正
210

CLIP OLT THIS AD AND SENI）TO－

TRI－STAR CORP．

P．O．Box 1727 Dept．H
Grand Junction，Colo． 81501

TABLE OF OHMMETER TESTS TO
DETERMINE TRANSISTOR TYPE

Ohmmeter Probe Connections To Transistor		Resistance Reading	Transistor Type
Positive Probe	Negative Probe		
collector	base	LoW High	PNP NPN
base	collector	Low High	NPN PNP
emitter	base	Low High	PNP NPN
base	emitter	Low High	NPN PNP

maximum and polarity. We're off and running.
You can obtain some data about the connections from the top transistor. The collector is the lead with the dc voltage (positive or negative). The emitter probably goes to a very small resistor, then to a capacitor coupled to the speaker. The remaining lead has to be the base lead. If the two transistors are the same type, you have the connections. If they're different, as in the complementary-symmetry circuit, the connections can still be the same; ohmmeter check to make sure. A handy quick-check for the common or ground is to look for the end of the filter capacitor that is not connected to the rectifier diode. This is usually the largest electrolytic on the board. (continued next month)
Plus Exclusive
Name
Street
City
Apt No

We Will Send You The Next 7 Issues FREE! You'll Find The Best Of the Name Brands Olson Products at Low, Low Prices!

Olson Electronics Dept. L2

260 S. Forge St., Akron, Ohio 44327

State Zıp

\qquad

ARE YOUR KIDS WATCHING OFF-COLOR TV?

THEN CALL YOUR NEIGHBORHOOD TV TECHNICIAN.
When Marshal Dillon's horse starts furning green on your color TV set. don't wait until you've got really big headaches. Early attention prevents related problems and makes it easier ... and less expensive to find and cure the trouble. Call your independent TV-radio service technician when color trouble starts

YOUR MDEPENDENT TV-RADIO SERVICE DEALER

PUT THIS BUSINESS-BUILDING TRAFFIC-STOPPER ON YOUR SHOP WALL OR IN YOUR WINDOW

See your Sprague Distibutor for window-size blow-ups of this message. Or, send $25 t$ to Sprague Products Co., 81 Marshall St., North Adams, Mass. 01247 to cover handling and mailing costs. Just ask for Poster RP-41.

IF YOU ARE READY FOR SERIOUS CAREER

Learn College-Level

ADVANCEMENT NOW-

Electronics at Home

College Credit. You can actually earn college credit through CREI programs, which you can use at recognized colleges for an engineering degree. CREI maintains specific credit transfer arrangements with selected colleges in the U.S.

There is only one way to a career in advanced electronics-through advanced training. You can get such training through a resident engineering college or you can take a CREI specialized college level electronics program at home.

Wide Choice of Programs. CREI offers you program arrangements with fourteen areas of specialization in advanced electronics. You can select exactly the area of specialization for the career you want.

CREI also offers program arrangements both for those with extensive experience in electronics and for those with only limited experience. All programs are college-level, except for a brief introductory level course, which is optional.

Unique Laboratory Program. CREI now offers a unique Electronic Design Laboratory Program to train you in the actual design of electronic circuits. You also get extensive experience in tests and measurements, breadboarding, prototype building and in other areas important to your career. The Lab Program makes it easier for you to understand the principles of advanced electronics. Only CREI offers this complete college type laboratory program.

The Lab Program includes professional equipment which becomes yours to keep. You will especially appreciate the Electronic Circuit Designer, which is available only through this program and which you will find extremely valuable throughout your professional career. arrangements with selected colleges in the U.S.

With CREl's unique Electronic Design Laboratory Program

Industry Recognized Training. For nearly 50 years CREI programs have been recognized throughout the field of electronics. CREI students and graduates hold responsible positions in every area of electronics and are employed by more than 1,700 leading organizations in industry and government.

Qualifications to Enroll. To qualify for enrollment, you should be employed in electronics or have previous experience or practical training in the use of electronic equipment. You must also be a high school graduate or true equivalent.

All CREI Programs are available under the G.I. Bill

Send for FREE Book. If you are qualified, send for CREI's full color catalog describing these college-level programs and your career opportunities in advanced electronics. Mail card or write for your copy of this book.

CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D. C. 20016

Accredited Member, National Home Study Council

DELUXE HIGHWAY EMERGECY

 KIT

PLUS 3 TUN-O.WASH OR TUN-O-POWER LABELS

TEXAS INSTRUMENTS
8 DIGIT, FLOATING DECIMAL CALCILATOR

PLUS 5 TUN-D.WASH OR TUN-D-POWER LABELS

Get These Outstanding Values Just for Trying

 TUN.OWASH or TUNOPOWERTUN-O-POWER is the first tuner restorer. It cleans, polishes and lubricates. TUN-D-WASH is like an ultrasonic bath. It washes away all dirt, grease and gunk.
We are offering the Calculator and the Highway Emergency Kit at greatly reduced prices because we want you to try TUN-O-POWER and TUN-D-WASH. Once you do, you won't want to be without them.
To order your Calculator or Highway Emergency Kit, mail your check and labels to:

EQUIPMENT REPORT

(continued from page 30)
are pulsed sequentially so that only one gun at a time is conducting. During the conduction interval, the G2 voltage is automatically adjusted by a programmable shunt regulator controlled from a multiplex generator. They have very conveniently used the line frequency to trigger their multiplex generator. The generator itself is a TTL chip consisting of two JK flip-flops. The clock driver is essentially $1 / 2$ of a TTL 7400 Quad NAND gate. What we have is a signal-driven (digital) pix tube providing a dynamic emission test as opposed to the more widely used "Static Emission Test." Figure 4 shows the basic test set-up for measuring emission with the pix tube hooked-up as a 2-element device.

We are still in the Test position of the function switch. Let's assume that our 25AP22A has low emission on all three guns. Proceed to the next step.

Rotate the function switch to the restore position. There are three restoration functions that can be performed in this position: remove shorts, clean-balance, rejuvenate.

At this time the pix tube we are testing has no shorts or leakage indica-tions-just very low emission (in the red). Put the rejuvenate/Cleanbalance switch into the rejuvenate position. With the function switch in the restore position, the heater voltage will be increased by 58% from the initial setting of 6.3 volts to 10 volts. There will be a 30 -second wait until the proper operating temperature is reached. At this time we depress the red rejuvenate pushbutton. The heater voltage automatically decreases to zero. At the same time the meter directly above the pushbutton should show a marked rise in current that drops off toward the meter's red region.

When the current has decreased to the red region and is approaching zero, release the pushbutton. This is an automatic timing feature for the process and leaves very little chance for stripping the cathode. Immediately return the function selector switch to the TEST position. All things being normal, the gun usually comes up to a very good emission reading. Repeat the process with the green and blue guns, using the green and blue rejuvenate pushbuttons. Now recheck the tracking and life tests. The results should be remarkable.

Let's assume that in the set-UP position of the function selector switch that leakage was indicated from Gl to the blue cathode. This immediately suggests that a current path exists between these two elements that is below 2 megohms. However, in the restore

Model WP-25. Popular 25-watt, penciltype iron for general purpose work. Handy size: $77 / 8^{\prime \prime}$ long. Lightweight: $13 / 4$ oz. Comfortable to hold. Perfect for crowded areas. Easily stored. Long. life, double-coated, Ko" screwdriver tip quickly changed to other available styles and sizes. Rugged stainless steel barrel. Use with or without optional, mounted or free-standing bench stand PH-25.

Ask your local distributor or write...

Weller-Xcelite Electronics Division

position the G1-cathode short lamp is not lit. This means that the leakage path is greater than 20,000 ohms. We then attempt a clean-balance operation for the gun in question. Simply put the function switch in the restore position and the rejuvenate/cleanbalance switch in the clean-balance position. Wait the required 30 seconds and depress the blue rejuvenate pushbutton and watch its respective meter drop toward zero. Then release when the pointer reaches 0.2 .

Let's set up a third (and final) condition with our 25AP22A. Assume that in the set-up position the Gl and k rlue lamps were again lit. This still indicates a leakage path between the elements of less than 2 megohms. However, when the function switch is rotated to the restore position the G1-K short lamp is lit. This now indicates that the leakage path is less than 20 K and possibly a dead short. Merely depress the remove shorts pushbutton and (unless the elements are welded together) the short should disappear.

We can now faithfully draw definitive conclusions about the model 467 and comment on the equipment based on real field experience. I have had approximately one month of use of the 467 for analysis of good tubes and bad tubes. The restoration process has had successes and failures. The results and conclusions were immediate. No tube during this period was ever "destroyed" by the equipment. I would like to qualify what I mean by "success" or "failure."

- In all cases thus far, the instrument accurately analyzed any given defect in picture tubes tested;
- The 467 would not restore tubes which had had a booster installed for a prolonged period of time;
- The 467 would not restore tubes which had previously been "rejuvenated" by another process.
- In all cases, when the picture tubes were "virgin," that is to say had not had a booster on it or no other restoration process applied, the 467 did the joh and did it well.

Conclusion

From the analysis standpoint, the B \& K Model 467 does a total job in determining that any given pix tube is good, bad, or marginal. It has performed its functions rapidly and has added only 3-4 minutes total diagnosis time (including set-up and restoration) to the in-home service call. Based upon this alone, it would be a welcone addition to any technician's list of valuable test equipment.

In many instances it has outshone it's own predecessor, the B \& K Model 466. The new unit costs $\$ 279$. R-E

PROFESSIONAL NUTDRIVERS ${ }_{81}$ Xcelite oxactly mina younced
LARGEST SELECTION ANYwhere

Ask your local distributor or write . . .
Weller-Xcelite Electronics Division

AUDIO FEEDBACK CIRCUITS

 (continued from page 68)left hand half of R2 are the equivalent of R_{k} in Fig. 5, while R3 plus the parallel combination of C3 and the right hand half of R2 are the equivalent of R_{F} in Fig. 5. Because $R_{F}=$ R_{k} at all frequencies (since it has been specified that R1 $=\mathrm{R} 3, \mathrm{C} 2=\mathrm{C} 3$ and R_{2} is linear so that the right hand half is equal to the left hand half), the voltage gain of the circuit is $e_{\text {out }} / e_{\text {. }}$ $=1$ (See Equation 10) at all frequencies. The curve relating gain to frequency is theoretically flat from 0 Hz to $\infty \mathrm{Hz}$.

DUAL
Potewtiometers
25 for $\$ 1.00$
Assorted ohmages. Originally for Hi-Fi, Stereo and TV.

L123

	1123
Otine	cinuita

50 for $\$ 1.00$
from 2 lugs up $L 143$

MISCELLANEOUS

MINIATURE
TUNING
METERS.

$L 190$

MONEY BACK GUARANTEE Terms: Minimum order $\$ 4.00$. Include postage. Either full payment with order or 20% deposit, balance C.O.D.
free catalog

L 188 GIANT PACK OF ASSORTED TRANSITORS

Silicon Planar

Untested, NPN \& PNP Power, Audio, RF 100 for $\$ 1.98$
LED's in working
condition 3 green or 3 yellow 3 for $\$ 1.00 \quad$ L101
10 LED's asst. in working condition
7 segment $\mathbf{1 . 0 0} \quad \$ 1.25$ L102 readouts
$\$ 1.25$ each
1103

VOLUME CONTROLS
20 for $\$ 1.00$
Wire wounds \& carbons, assorted values, some with switches.
$1 \frac{\text { AMP } 800 \text { PIV DIODES }}{125}$
6 for $\$ 1.00$ L190
ZENER DIODES 400 mw 4 to 20 volts. 25 for $\$ 1.19$
HOOKUPWIRE-100 Feet (4 rolls) assorted gauges. $\begin{gathered}\$ 1.00 \\ \text { L304 }\end{gathered}$

IT FOR

free value packed

 CATALOG
BONUS

FREE CAPACITOR KIT
With Every \$5 Purchase

DISC CAPACITORS
 60 for $\$ 100$
 Assorted capacitances from . 0001 to. 1. Different voltages, mostly 600 volts N.P.O. N750. L140
 MINIATURE TRANSISTOR ELECTROLYTICS
 13 for $\$ 1^{00}$

Some axial leads, some vertical mount, mixed capacitances and mixed capacitances and mixed voltages. L159

50 PIV SILICON DIODES 1 amp. 15 for $\$ 1.00$ L107

$$
1 / 2 \text { WATT RESISTORS }
$$

60 for $\$ 1.00 \quad$ L261
GRAB BAG SPECIAL Four Pounds of pot luck, elec-
tronic parts. $\$ 1.00$

 Aequired rrom U.S.Defanse depota or 0 . mowed from equif. ment (now ond usod). These ore leboratery tested ond gyerea. reed tor one full yeer. standard makers es RCA, CE. olt.
RADIO \& TV Receiving
Any 3 for $\$ 1.19$
14., 155,

3CB6, 3DG4. 3EH7, 3EJ7.
$3 \mathrm{KT6}, 354,3$, $4,48 \mathrm{C} 5$.
$4 B N 6,48 \cup 8,5 C Z 5,516$.
5T8, SU4, GAC7, GAB4, GAF4.
GAG5, GAV8, GAK5, GAK6,
GAL5, GAQ5, GAU6, GAXA.
GBAG, 6BAlI.
6BL8, 6BN4,
6BC6, 6B53, 6BU8, 6BW4,
6826, 6CB6, OCDS, OCFO.
6CG7. OCGB, ОCM3

60K6, 6DN7, 6DT6, 6DW4
GEA7, GEH5, 6EH8, GFD7,
GFM7, 6FQ7, ©GF7, 6GH8, 6GK6.
6GI7, 6GM6, 6GNB, 6GU7.
6GV5, 6HE5, 6HJ7, 6HJ8,
6H58, 6J6, $6 J N 6, ~ 6 J W B . ~$ 6K7, 6 K 11 , 6 KY 8 ,
6LF8, GLY8, 6SA7, 6SH7.
6SN7, 6SV7, 6T8, GT10.
6V4, $6 \mathrm{~W} 4,6 X_{4}, 7 G 57$,
BCM7, BCN7, BEB8, BSN7.
12AD6, 12AE7, 12AU7.
12AT7, 12AUG, l2aV5,
12AX4, 12BA6, 12BE6.
12BH7, 128Y7, 12C8.
12CN5, 12DS7, 12R5.
12SC7, 12SN7.
18FWG, 19T8, 2.EE7, 22BW3.
35Y4, 36АМ3, 5085.
ROCKER SWITCHES
4 for $\$ 1.00$ L247
TRANSISTORS 2N3055

Now move the wiper arm of potentiometer R2 to the extreme left. C2 is shorted while C3 is placed across the entire resistance of R 2 . In this position, \mathbf{R}_{H} of Fig. 5 becomes R1 while R_{F} is effectively $R 3$ in series with C3. The impedance of R_{F} is $R 3+1 /$ $\mathrm{j} 6.28 \mathrm{fC} 3=(\mathrm{j} 6.28 \mathrm{fC} 3 \mathrm{R} 3+1) / \mathrm{j} 6.28$ fC 3 . Applying Equation 10, the output becomes;

$$
e_{\text {nut }}=e_{n}\left(\frac{\mathrm{j} 6.28 \mathrm{fC} 3 \mathrm{R} 3+1}{\mathrm{j} 6.28 \mathrm{fC} 3 \mathrm{R} 1}\right) \text { Eq. } 11 .
$$

The response curve will begin to rise at the frequency where the numerator is equal to $(\mathrm{j}+1)$ or $\mathrm{f}_{\mathrm{ol}, \mathrm{B}}=1 / 6.28$ C3R3 Hz. It should level off at the frequency where the denominator is zero or $\mathrm{f}=0 \mathrm{~Hz}$. Equation 11 defines the maximum bass boost curve shown in Fig. 7.

The maximum bass cut occurs when the wiper arm of potentiometer R2 is at maximum right hand setting. Here,

| MOVING? |
| :--- | :--- |
| Don't miss a |
| single copy of |
| Radio-Elec- |
| tronics. Give |
| us: |
| Six weeks no- |
| tice |
| Your old ad- |
| dress and zip |
| code |
| Your new ad- |
| dress and zip |
| code |

name (please print)

address

Mail to: Radio-Electronics
SUBSCRIPTION DEPT., BOULDER, COLO. 80302

CATALOG of over

 1500 unusual tools

A carefully selected and tested assortment of unique，hard－to－find tools，clever gadgets，precision instruments，bargain kits．One－stop shopping for the technician，craftsman， hobbyist，lab specialist，production supervisor．Many tools and measuring instruments available nowhere else． One of the most unusual and complete tool catalogs anywhere．Get your copy of the NC FLASHER today．

National Camera
2000 West Union Ave．，Dept．GBC
Englewoed，Celorodo 80110
\mathbf{R}_{B} of Equation 10 becomes $\mathrm{R} 1+$ $1 / \mathrm{j} 6.28 \mathrm{fC} 2=(\mathrm{j} 6.28 \mathrm{fC} 2 \mathrm{R} 1+1) / \mathrm{j} 6.28$－ $f C 2$ ，while R_{F} is simply R3．Sustituting this into equation 10 yields

$$
\mathrm{e}_{\text {out }}=\mathrm{e}_{\mathrm{s}}\left(\frac{\mathrm{j} 6.28 \mathrm{fC} 2 \mathrm{C} 3}{\mathrm{j} 6.28 \mathrm{fC} 2 \mathrm{R} 1+1}\right) \text { Eq. } 12
$$

The curve will begin to roll off at the frequency where the denominator is equal to $j+1$ or $f_{\text {oLc }}=1 / 6.28 \mathrm{C} 2 \mathrm{R} 1$ Hz ．It should level off at $\mathrm{f}=0 \mathrm{~Hz}$ ， the frequency when the numerator is equal to zero．This bass cut curve is also illustrated in Fig． 7.

We can now choose the components for this circuit．It is desirable to make the value of R 2 as large as practical． A 1－megohm potentiometer was the component originally chosen by the inventor．

We can expect about 15 dB of ac－ tual boost and cut at the extreme set－ tings of the control if we overdesign for a maximum cut and boost of 20 dB .20 dB is a voltage ratio of $10: 1$ ． Again applying Equation $10, \mathrm{e}_{\text {out }} / \mathrm{e}_{\mathbf{1}}=$ $10 / 1=R_{F} / R_{B}$ ．Since $R_{B}=R_{F} / 10, R 1$ is made equal to about $1 / 10$ of R 2 ，or about 100,000 ohms．For symmetry of the boost and cut modes，R3 is set equal to R1．

Fifteen dB of boost is required at 50 Hz ．The curve should have an even－ tual $6 \mathrm{~dB} /$ octave boost or roll－off．This （continued on page 87）

The Ultimate in Ignition Systems！ \star ELIMINATES BREAKER POINTS． Perlect Timing and Dwell never change！
\star Eliminates Tune－ups．
Never wears out or needs any Maintenance．

\star The Most Advanced ＂OPTO－ELECTRIC SYSTEM＂
－The Allison Breakerless System eliminates the Points and Condenser，replacing them with an Opto－Electronic Trigper，using a Light－Emitting Diode and Phototransistor Also completely eliminates wiper－arm＂friction＂wear The only＂TRUE＂Electronic tgnition ．．．That you can install for under $\$ 100$ ．Gives 40 －times more Timing Accuracy than ANY system using mectianical Breaker．Points Unlimited RPM．Smoother running ．（No timing fluctuation as with Magnetic units）．Unaffected by Temperature． Moisture，or vibration！All Solid－State Components． Easier Starting under any condition！Increased Horsepower Sparkplugs last longer．Perfect timing increases engine Efficiency and Gas Mileage up to 30% ！
－Quick and Easy Installation！ ＊Tested and Proven reliability．
Only $\$ 4995$－SATISFACTION GUARANTEED！ －Complete－1－YEAR FACTORY WARRANTY （Slate Make，Year，Engine Size）．（Calif．Res．add Tax） －CONVERT YOUR＂C－O＂UNIT TO areakerless！ ＂TRIGGER－UNIT＂ONLY $\$ 34.95$
＊Send Postcard for fREE BROCHURE Today．
ALLISON AUTOMOTIVE CO．
P．O．Box 881－L，TEMPLE CITY，CAL． 91780
Circle 62 on reader service card

Don＇t buy a rejuvenator．．． buy the complete picture－tube service system！ For only \＄199：

1．Leakage and Shorts Tests／Repairs： Meters indicate simultaneously shorts or leakage in R，B，and G guns．Here，Green gun is defective．

3．Emission $/$ Tracking Simultaneous emis－ sion readings give you instant check on ratios between guns．Here，Red－gun emis－ sion is not acceptable．

2．Easy Intermittent Tests：Simultaneous monitoring of three guns quickly delects intermittent gun，eliminates time－wasting guesswork．Bhe gun，above，is intermittent．

Get all of these servicing essen－ tials at RCA＇s sensible price－only \＄199：Buy the WT－333A from one of the more than 1000 authorized RCA distributors worldwide．Or，write to RCA，Harrison，N．J． 07029.

Circle 63 on reader service card

When you buy the 3－meter RCA WT－333A，you get both an accurate picture－tube tester and a rejuvenator． The WT－333A performs all the vital tests and repairs you need to service nearly 2000 picture－tube types．

$\pi \mathrm{P} \Pi^{\text {Electronic }}$ Instuments
 $\square \perp \sqrt{\text { Electronic }}$ instruments

makes both picture tubes and a picture－tube tester．
Ours has to be good！

The Pencil Soldering Iron with Operating Light, 2 Heats and On/Off Switch

$\$ 10.95$
 NET

Model 540s Soldering Iron Length $8^{1 / 2^{\prime \prime}}$ Weight 2 oz .

- Light shows when it's on
- 2 heats-20w and 40wfor any job
- Ironclad tips for longer life
- Cool, unbreakable polycarbonate handle
- Burn-resistant neoprene cord
- Converts to a desoldering iron with low cost attachment

The Pencil Desoldering Iron with Operating Light, and $0 \mathrm{n} / \mathrm{Id} \mathrm{de} / 0 \mathrm{ff}$ Switch
$\$ 15.95$
NET

Model 510	Length $8^{1 / 2 \prime \prime}$
Desoldering Iron	Weight $31 / 2$ oz.

- Light shows when it's on
- Operates at 40 w ; idles at 20 w for longer tip life
- 8 tip sizes available to handle any job
- Cool, unbreakable polycarbonate handle
- Burn-resistant neoprene cord
- Exclusive new bracket insures alignment, prevents damage
New kits also availablel - Soldering Kits • Desoldering Kits - Soldering/Desoldering Kits To locate your nearest distributor call toll-free 800-645-9200

new products

More information on new products is available from the

 manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.CORDLESS SOLDERING IRON, Quick Charge model 7700. Decrease in recharging time is due to long-life nickel cadmium batteries. Lower base stand (with slot for spare tip) will return a partially discharged battery to full capacity in an hour or two. A completely discharged battery can be fully recharged and used again in about four hours, giving tip performance equivalent to up to 50 watts and over 700° temperature. Same low voltage and isolated-tip construction as original lso-Tip which eliminates electrical leakage and need for grounding, re-

ducing risk of heat damage to sensitive components. Tip is easily replaceable with any of the four completely different tip sizes from heavy duty to fine (manufacturer does caution against interchanging standard Iso-Tip with a Quick Charge stand as units are not interchangeable.

Pressing the button gives you soldering heat in five seconds plus a built-in work light on working area; pilot light, too. Lockoff switch prevents accidental heating of tip. Carries enough power to make up to 125 electronic loints per charge; automatically begins recharging when replaced in its stand; no wires to connect; no positioning of iron in its stand. 8 inches long with tip; 6 oz.; kit consists of cordless Quick Charge soldering iron, separate recharging stand, one No. 7545 fine tip, one No. 7546 heavy duty tip and instruction booklet.-Wahl Clipper Corp., 2902 Locust Street, Sterling, III. 61081

Circle 31 on reader service card
ALARM, Mach 4. Keyless vehicle alarm can be installed in any vehicle in 30 minutes.

Encapsulated electronics insures accurate timing and monitoring of all battery current flow, temperature stability and long product life. Designed with solid-state circuits and

components. Arming the system is a throw of a hidden switch within the vehicle; hidden switch must be turned off within 15 seconds of entering the vehicle or powerful $114-\mathrm{dB}$ siren will sound. Needs no fender hole or lock.-Wolo Manufacturing Corp., 37 Jefry Lane, Hicksville, NY 11801.

Circle 32 on reader service card
OSCILLOSCOPE, PS29 Minute Man. Automatic triggered pushbutton scope enables you to display any color TV or video waveform by simply pushing a button. Pushbutton displays include TV vertical, TV horizontal, 3.58 MHz for viewing color subcarrier information, five times expand and

a completely front end vector display. Sixth button sets scope for 60 Hz line sweep used in sweep allgnment work. Triggers internalIy on any signal down to 20 millivolts. External trigger allows you to sync on any signal above a dc voltage. Absence of input signal is indicated by continuous running baseline.

Has dc coupling, 500 V ac input protec-
tion， 10 MHz bandwidth with vertical sen－ sitivity from 10 millivolts per div direct to 500 volts 1 div using 10×1 probe at 3% calibration accuracy．Push the 3.58 vari－ speed button and horizontal sweep control activates which offers signal display for any non－video frequencies from dc to 10 MHz ．\＄495．00．－Sencore，Inc．， 3200 Sencore Drive，Sioux Falls，SD 57107.

Circle 33 on reader service card
SOLDERLESS TERMINALS KITS．Only the 12 most popular types are included in each of the six kits，with wire sizes ranging from 22－ 18 through 12－10．Each kit comes with uni－ versal crimping tool with built－in bolt cutter and wire stripper．All kits are supplied in

reusable cases．Insulated terminals offer beveled mouth for wire insertion，multiple ＂V＂groove for maximum holding power and minimum contact resistance，open barrel construction，one－piece，burr－free construc－ tion，uniform electro－tin plating．
K－120－A kit（ $\$ 21.95$ ）includes 520 pieces of non－insulated solderless terminals．K－130－A kit（ $\$ 31.95$ ）contains 600 insulated and non－ insulated terminals．K－140－A（\＄39．95）has 600 insulated terminals．K－170－A（\＄13．95）has 180 non－insulated terminals．K－180－A（\＄14．95）in－ cludes 120 insulated terminals．K－220－A （\＄32．95）has 420 pieces of non－insulated and insulated quick－disconnect solderless ter－ minals．－Waldom Electronics，Inc．， 4625 West 53rd Street，Chicago，IL 60632.

Circle 34 on reader service card
TURNTABLE，PL－10．Belt－drive turntable and pickup combination comes complete with its own electrically shielded spring suspension wood－grain cabinet and hinged dust cover． Uses belt－drive system with a 4 －pole synchro－ nous motor for stable speed rotation．Alum－

inum alloy die－cast 12 in ．platter rotates at $331 / 3$ or 45 rpm regardless of line voltage fluciuations．

Signal－to－noise ratio is better than -47 dB ； wow and flutter is less than 0.1% wrms． Statically balanced，S－shaped pickup arm
$\$ 149.95$
less 19 ＂picture tube
－ 30 KV CAPACITY
－METAL CABINET
－8PEAKER BUILT IN
STATIC CONVERGENCE －FRONT PANEL CONNECTIONS

Circle 65 on reader service card

Now．．．the most enjoyable do－it－yourself project of your life－ A Schober Electronic Organ！

You＇ll never reap greater reward，more fun and proud accomplishment，more benefit for the whole family，than by assembling your own Schober Electronic Organ．
You need no knowledge of electronics， woodwork or music．Schober＇s com－ plete kits and crystal－clear instructions show you－whoever you are，whatever your skill（or lack of it）－how to turn the hundreds of quality parts into one of the world＇s most beautiful，most musi－ cal organs，worth up to twice the cost of the kit．
Five superb models with kit prices from $\$ 575$ to around $\$ 2,300$ ，each an authentic musical instrument aclually superior to most you see in stores，easy for any musically minded adult to learn to play，yet completely satisfying for the accomplished professional．And there are accessories you can add any time after your organ Is finished－lifelike big auditorium reverberation，automatic rhythm，presets，chimes，and more．

Join the thousands of Schober Organ builder－owners who live in every state of the Union．Often starting without technical or music skills，they have the time of their lives－first assembling． then learning to play the modern King of instruments through our superlative instructions and playing courses：

Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog，with all the fascinating details！

Circle 67 on reader service card

WHAT'S AN "EBM"??"?
Over 1,000 iclustrutions und Tables, hisi-density cext equivalent in content to a whole collection of othe books, arranged in specific sections on;

BENCH PLANNINC \& LAYOUT... BASIC BENCH SUPPORT FACILITIES . . HAND SOLDERINC. . . . CONSTRUCTION \& ASSEMBLY. . .SEMICONDUCTORS . . .ELECTRON TUBES . . RES ISTORS, POTENTIOMETERS \& RHEOSTATS. .CAPACITORS \& ELECTROSTATIC DEVICES..... INDUCTORS \& ELECTROMAGNETIC DEVICES . . .SWITCHES \& RELAYS. . WIRE \& CABLE. DISPLAYS. INDICATORS \& METERS. ENERGY SOURCES. HARDWARE, FINISHES $\&$ HOUSINGSmechanical devices, movements \& actuators ...DEVICE \& COMPONENT DATA...GENERAL TABI.ES \& FORMULAS . . TIME \& FREQUENCY SERVICES... APPLICATIONS \& CTRCUITS.

Each as a separatcey lound book section, wich can rugged solid polycthytene binden supplied.

ORDER YOURS TODAY!

Check, Money	Order, eankamericard on masterciarge (Write on call with Account ")
STILL OwLy	
\$1795	TECHNICAL DOCUMENTATION BOX 340
Postpaid in U.S.A.	CENTREVILLE, VA 22020 703.131.393s

pivots on a point of hard alloy for reduced friction and improved tracking. Anti-skating control is independent of tonearm. Plug-in shell and oil-damped cueing, plus directreading stylus force scale on adjustable counterweight are additional features. Accepts cartridges weighing from 4 grams to 8.5 grams and provides a stylus overhand of 0.61 in . Operates on $120 \mathrm{~V}, 60 \mathrm{~Hz}$; consumes 10 watts of power, maximum. $6^{13} / 2_{2} \times 16^{1} \mathrm{~K}_{6} \times$ $1311 / 22$ in.; 14 lbs. 12 oz.; $\$ 99.95$.-U.S. Pioneer Electronics Corp., 75 Oxford Drive, Moonachie, NJ 07074.

Circle 35 on reader service card
WIND GENERATOR, stock No. 19,189, taps inexhaustible energy source to supply current for battery charging, lighting, emergency current supplies, and various uses in isolated cabins or lodges.

Six-foot propeller turns 200-watt generator to supply 12 volts. Starts charging in $7-\mathrm{mph}$

winds, delivers 15 amperes with winds at 23 miles per hour. Air-brake governor automatically prevents overcharging.

Enclosed collector ring with double carbon brushes protects against dust, frost or ice. Special capacitors and grounding spring eliminate radio interference. Mounts on 10 foot; 4-leg angle-iron tower.

Comes with completely wired, insulated instrument panel and fult instructions. Price (without 12 -volt battery) $\$ 425$ postpaid. Edmund Scientific Co., 980 Edscorp Bidg., Barrington, NJ 08007.

Circle 36 on reader service card
COMPONENTS KIT, Stock No. 199006 contains a variety of transistors, diodes and resistors plus one circuit breaker- $29 \mathrm{com}-$ ponents in alt. Also included is a tube of white silicone heat sink compound. Parts location diagram fils into kit tid and simpli-

fies parts identificaton by showing exact location of each component in the kit. Cross reference chart shows usage of each part by chassis number and circuit symbol number. Components in the kit are used to service XL-100 chassis. \$59.60.-RCA Parts and Accessories, P.O. Box 100, Deptford, NJ 08096.

R-E

Circle 37 on reader service card

Circle 69 on reader service card

MINICOMPUTER MODIFICATIONS
(continued from page 43)
well as the gates needed to connect them.

Expanding input ports

The basic Mark-8 computer has only two input ports which may not be enough for all purposes, particularly if we want to use one input port for an

ASCII keyboard and use the other for data input. We know that we can bus data to the other input port using three-state gates or open-collector gates with the decoders on an output port to select the data source. This was shown

Figet
 TOOL CATALOG

2000 items - 112 packed pages

Circle 70 on reader service card

Fig. 2
in the dvm and counter example. This configuration takes extra software and hardware and doesn't allow for a great deal of flexibility for future expansion or for more complex systems.

The two 8263 multiplexers on the Input Multiplexer Board allow the computer to input data from the memory, input port 0 or input port 1. The selection of the data source is performed by the computer so that an iNPl instruction switches the multiplexers to the input port 1 data lines. We can simplify the multiplexer scheme so that it switches to input data whenever an inp type instruction
(continued on page 98)

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all kleps spring loaded).
Weps 10. Boathook clamp grips wires, lugs, terminals. Accepts bananà plug or bare wire lead. $43 / 4^{\prime \prime}$ long. $\quad \$ 1.39$ Kleps 20. Same, but $7^{\prime \prime}$ long.
$\$ 1.49$ Kleps 30 . Completely flexitle. Forked-tongue gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long. $\$ 1.79$ Kleps 49. Completely flexible. 3 -segment automatic collet firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $6 \frac{1}{4 \prime \prime}$ long, $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws $41 / 2^{\prime \prime}$ long. $\$.99$ Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doutles as scribing tool. "Bunch" pin fits banana jack. Phone tio. $51 / 2^{\prime \prime}$ long.
$\$.89$
All in red or black-specify. (Add 50c postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to:
RYEINDUSTRIESINC. 129 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd.

Circle 72 on reader service card

DOTHATCH ${ }^{\circ}$

an exclusive Lectrotech development

The ultimate in pattern stability, at all temperatures, provided by Digital IC Counters. No internal adjustments. RF output channel 3 or 4 Video output $3 v$. P.P. 4.5 MHz crystal sound carrier. With shoulder 4.5 MHz crystal sound carrier. With shoulder
strap and self-contained cable compartment. Net 129.50

See your distrioutor or write Dept. RE-12
LECTROTECH, INC.
5810 N. Western Ave. Chicago. Illinois 60659 (312) 769.6262

Circle 73 on reader service card

You'll never know how much good you can do until you do it.

You can help people.

In fact, there's a crying need for you Your talents. Your training. Your concerns. They make you valuable to your business. They can make you priceless to your community.

If you can spare even a few hours a week. call the Voluntary Action Center in your town Or write, "Volunteer. Washington. D.C 20013.
litl do you good to see how much good you can do.

Volunteer.

The National Center The National Anter
for bluntary Action

new lit

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

TAPE ACCESSORIES BOOKLET. 8-page booklet includes Ampex, Scotch, Craig, Concord, Dokorder, Capitol, Electro-Voice, Koss and others. Contains specifications, prices and photos of the tape accessories as well as what type of equipment each of the companies is offering.-Saxitone Tape Sales, 1776 Columbus Road, NW, Washington, DC 20009.

Circle 38 on reader service card
STEREO CATALOG. 32-page catalog contains systems, cartridges, stereo phono cartridges, turntables, changers, phono accessories, loudspeakers, tape recorders and players, tape accessories, 4-channel systems, professional audio equipment, tapes, microphones, mixers, headphones and audio/ video electronic equipment. Many illustrations and prices; an order form is inserted in the center of the catalog.-ADR Audio Warehouse, 6200 Chillum Place, NW, Washington, DC 20011.

Circle 39 on reader service card

FREE ALARM SYSTEM CATALOG

LOOK FOR
THE

- - - - -

Full line of professional burglar and fire alarm systems and supplies. 96 pages, 450 items. Off-theshelf delivery.

mountain west alarm 4215 n. 16th st. phoenix, az. 85016 (602) 263-8831

AUDIO FEEDBACK CIRCUITS

(continued from page 81)
places the corner frequency at about 300 Hz . Substituting 300 Hz for $\mathrm{f}_{\text {or, }, ~}, \mathrm{C} 3$ is calculated to be 5000 pF . $(.005 \mu \mathrm{~F})$. For symmetry reasons, $f_{\text {wi, }}$ is also set at 300 Hz and as a result, C2 $=$ C3 .

Intermediate settings of this control will give intermediate amounts of boost and cut. 300 Hz will not be the corner frequency at these intermediate settings. The corner frequency will shift closer to the low end of the band when less emphasis or attenuation is required. The high and midfrequencies will not be affected by the settings of the control.

The treble circuit is shown in Fig. 8. C1, R1, R3, and C 4 are from Fig. 6. The potentiometer R 2 has been drawn as a short circuit and omitted because at the high frequencies involved, C2 and C3 are effectively shorts across the bass control.

Effectively, with R5 at the maximum left hand setting (maximum treble boost), the control is a short across R1 and several other components. As a result, the high frequencies are fed more easily to the gate of the FET, than ar the lower frequencies. This meets the requirements of a treble boost circuit.

Similarly, at the extreme right hand setting of R5, C5 shorts R3 as well as several other components in the circuit. It feeds the high frequencies back from the output to the gate more readily than it does the lower frequencies. Hence there is treble cut.
(continued on page 97)

用GS ELECTRONICSL

008A MICROCOMPUTER KIT

8008 CPU, 1024×8 memory: memory is expandable. Kit includes manual with schematic, programming instructions and suggestions; all ICs and parts supplied except cabinet, fuses and hardware.
Includes p.c. boards
-\$375.00
MANUAL ONLY, $\$ 25.00$
(No Discount on Manual) 008A-C AUDIO CASSETTE ADAPTER KIT Kit includes all ICs, p.c. board, power supply. schematic and instructions. Will interface most audio cassette recorders to the 008A Microcomputer. NOT intended to interface with any other computer. $\$ 50.00$ 008A-K ASCII KEYBOARD INPUT KIT
Kit includes keys, p.c. board, ICs, power supply, schematic and instructions. This kit is intended to interface ONLY with the RGS Electronics 008A Microcomputer •\$50.00 TRANSISTORS
NPN General purpose TO-92 \$.08;\$5.95/100 PNP General purpose TO-92 \$.08,\$5.95/100 Other transistors and JFETS available at our usual low prices; all are tested, good units. Specs available in our flyer.

RGS ELECTRONICS, 3650 Charles St. Ste K, Santa Clara, CA 95050
(408) 247-0158

We sell many ICs and components not listed in this ad, included most of the 7400 series; send a stamp for our free flyer.

TERMS OF SALE: All orders prepaid; we pay postage on all U.S. orders. Handling charge of $\$ 1.00$ on U.S. orders under $\$ 10.00$, foreign orders under $\$ 25.00$. California residents please include sales tax. Please include name, address, and zip code on all orders and flver requests. -DISCOUNTS: 10\% OFF ORDERS OVER $\$ 25.00 \cdot 20 \%$ OFF ORDERS OVER $\$ 250$.

Circle 75 on reader service card

in your Electronics Career through

HOME STUDY

Earn Your DEGREE

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of independent study.
The Grantham correspondence degree program in electronics is comprehensive. It begins with basics, written in very simple language, and continues through the B.S.E.E. degree level. Throughout the entire program, heavy emphasis is placed on clear explanations written in great detail, progressing from the simple to the complex, in easy steps.
Our free bulletin gives complete details on the curriculum, the degrees awarded, the requirements for each degree, and how to enroll.

GRANTHAM SCHOOL OF ENGINEERING 2000 Stoner Ave., Los Angeles CA 90025 - Telephone (213) 477-1901

Worldwide Career Training thru Home Study Mail the coupon below for free bulletin.

346 Ways To Save On Instruments, Burglar Alarms, Automotive \& Hobby Electronics!

The more you know about electronics, the more you'll appreciate EICO. We have a wide range of products for you to choose from, each designed to provide you with the most pleasure and quality performance for your money. The fact that more than 3 million EICO products are in use attests to their quality and performance.

"Build-it-Yourself" and save up to 50% with our famous electronic kits.

For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Eicocraft Project kits, Burglar-Fire Alarm Systems and name of nearest EICO Distributor, check reader service card or send $50 \propto$ for fast first class mail service.

EICO-283 Malta Street,
Brooklyn, N.Y. 11207
Leadership in creative electronics since 1945.

STAR REMOTE CONTROL

(continued from page 5I)
Now birdie counting begins and continues until the desired channel is reached.

To summarize, channel acquisition is a three-step process involving
(1) Setting the VCO to a frequency midway between the $24-\mathrm{HMZ}$ comb;
(2) Scanning downwards until contact is made with the $24-\mathrm{MHz}$ comb; ramp down;
(3) Upon contacting the comb, reversing the sweep and simultaneously posting a $6-\mathrm{MHz}$ comb and counting to the desired channel, ramp up.

Accommodating Channels 5 \& 6

Channels 5 and 6 are unique in that their frequencies lie out of step with the regular $6-\mathrm{MHz}$ intervals which separate all other channels. A $6-\mathrm{MHz}$ comb cannot be used in a direct way to lock onto these channels. A $4-\mathrm{HMz}$ comb will, however, fall $1-\mathrm{MHz}$ away from Channel 5 and 6 oscillator frequencies. The 31st harmonic of $4-\mathrm{MHz}$ is $124-\mathrm{MHz}$ which is 1 MHz above Channel 5 L.O. frequency of $123-\mathrm{MHz}$. The 32nd harmonic of $4-\mathrm{MHz}$ is $128-\mathrm{MHZ}$ which is 1 MHz below the L.O. of $129-\mathrm{MHz}$ for Channel 6. By properly decoding the birdie counter, it is possible to use a $4-\mathrm{MHz}$ comb to lock a birdie counting system on Channels 5 or 6.

Two digits are required to address a channel. These are entered sequentially, first tens then units. The data may be entered through the keyboard or remote input. In either case, data is converted to binary form prior to entering the data decoder.
The data decoder accepts keyboard or remote data in binary form and decodes this into channel address or auxiliary functions. DATA VALID and LOAD ENABLE outputs are additionally derived from the data decoder.

Read-In sequence

Assume that Channel 45 is to be selected. A " 4 " is first entered into the data decoder (see Fig. 6). The data valid line immediately goes high indicating that a number between 1 and 15 is present at the data decoder input. The " 4 " is not immediately read into the system, however. Read in occurs only when valid data is present for a minimum of 70 ms . This assures that noise inputs less than 70 ms are not read into the system.

This delay is produced by Cl , which charges to the upper trip point of ST 70 ms after the data valid line goes high. ST fires, generating a transfer signal. This signal activates the load control which first loads the contents previously stored in the units counter, into the tens counter, and subsequently loads the " 4 " into the units counter. These pulses appear on the load control output lines designated load tens and load units. Upon release of the "4," Cl discharges through the lower trip point of ST causing the transfer line to go to zero. This completes loading of the first entry. A similar sequence occurs for the second entry.

The second entry differs from the first
in that the load control emits an extra strobe. This strobe triggers the DMV which in turn loads the contents of the units and tens counters into the units and tens buffer. At this time the number 45 is stored in the buffers and the scan sequence is initiated. Note that data was transferred to the buffers only after the second digit was entered. The character generator now displays Channel 45 , the birdie counter is preset to 45 and the band de-coder recognizes operation in the uhf band. With these ingredients and with the initiation of the scan sequence, the system will tune to Channel 45.

Yes, the STAR system is complicated. But it is likely that we will be seeing many similar circuits in other makes of sets in the models to come.

R-E

COLLSCTORS!

We've just added the 1927 Radio Encyclopedia to your growing library -
S. GERNSBACK'S 1927 RADIO ENCYCLOPEDIA is your technical book on wireless and early radio. Deluxe illustrated reprint of the original. 175 pages. $\$ 12.95$ hard-caver, $\$ 9.95$ soft-cover.
VINTAGE RADIO is the fascinating photo reference for collectors and historians, 1887-1929. 263 pages, over 1,000 photos. $\$ 6.95$ hard-cover, $\$ 4.95$ soft-cover.
RADIO COLLECTOR'S GUIDE is the data book for collectors, 50,000 facts, 1921-1932. 264 pages. $\$ 3.95$ soft-cover.

And now while they last-Most-Often-Needed 1926-1950 Diagrams

The original Supreme Publications books. Schematics of over 3,000 radio models from 1926 thru 1950. Restore those old sets, or use your books for valuable historical information.

- 1926.1938 volume 600 models $\$ 7.00$.
* 1926.1938 volume, $1941,42,46,48,49,50, \$ 4.00$ each.
- All seven volumes, special price $\$ 28.00$.

Quantities of original books are limited. Order now and avoid a wait for reprints.

SEND TODAY to Vintage Radio, Dep't A . Box 2045, Palos Verdes Peninsula, CA., 90274. Postage Paid. California residents add 6% tax.

NAME
STREET
CITY

COLLECTORS!

There's a new Heathkit everyone on

Introducing a new generation of Heathkit small-screen color TV

- On-screen digital channel readout
- Optional on-screen Digital Clock
- New one-button Preset Picture Control (PPC) restores perfect picture at a touch
- New precision in-line gun picture tube with new slotted shadow mask for greater light output
- No convergence or purity adjustments - ever
- 3 popular screen sizes - 15, 17, \& 19 in . (diagonal)

In the new Heathkit GR-500, GR-400 and GR-300, Heath brings you another industry first - a new generation of small-screen color TV receivers featuring on-screen digital channel readout, an optional digital clock accessory, and a host of other exciting new design innovations. The new precision in-line gun tube uses a slotted shadow mask for far greater light output. And, in the GR-400 \& 500, a negative matrix screen is used for greater contrast and brightness. A wider bandwidth IF amplifier with fixed LC filter was added. This, coupled with luminance and video circuits with black level clamps maintains the true brightness level of the televised scene, with picture realism you never dreamed possible.
Convergence and purity adjustment a thing of the past. A new precision static toroid yoke offers vastly improved convergence. And the factory adjusted and sealed yoke and magnet assemblies completely eliminate the need for convergence and purity adjustments, yet the results are superior to previous methods requiring manual adjustments.

Improved VHF tuner design. Another area receiving special attention was the VHF tuner. It was given a new mixer circuit featuring a dual gate FET to achieve better cross modulation performance. The RF amplifier is also a dual gate FET, resulting in a low noise figure, high gain and low cross modulation. The four circuits of the tuner (most have only three) offer far greater selectivity than ordinary sets.
Total VHF/UHF detent tuning convenience - with on-screen channel display. Every VHF and UHF channel is selectable simply by turning the channel selection knobs until they click to your favorite channel with precision detent action. As you turn the knobs, every channel number is displayed on the TV screen in big bright digits, completely adjustable as to brightness, position on the screen, and length of display time. And the same goes for the optional digital clock. Fine tuning (AFT) is automatic.
New one-button Preset Picture Control (PPC). An important new convenience feature is the PPC button located on the front panel. Once the brightness, contrast, color and tint have been correctly set by the rear preset controls, a touch of the PPC button returns the picture to perfection instantly - no matter how much the front-panel controls have been disturbed.

Optional roll-around cart Other design innovations include in-stant-On operation with a front-panel defeat switch for vacation-time shutdown; hi-fi output jack and TV speaker defeat switch; 75-ohm VHF antenna input; a new high voltage power supply with voltage tripler circuit for plenty of reserve power; a new quasi-complementary-symmetry vertical deflection circuit that eliminates the need for an output transformer; new slide-out chassis, plus interconnecting cables using plugs and sockets, for easier adjustment and servicing.
Get with the new generation of Heathkit small-screen Color TV now . . . in time for the holiday fun!
Kit GR-500, less cabinet, 88 lbs.,
Exp./Frt.
.499.95*
GRA-500-1, table model cabinet for GR-500 (main illus.), $35 \mathrm{lbs} .$,
Exp./Frt.
.39.95*
GRA-500-2, floor model cabinet for GR-500 (inset), 45 lbs .,
Exp./Frt. 89.95*

Kit GR-400, with cabinet, 104 Ibs.,
Exp./Frt.
489.95*

Kit GR-300, with cabinet, 90 lbs.,
Exp./Frt. 449.95*
GRA-403-18, roll-around cart for GR300, -400 \& $-500,23 \mathrm{lbs}$. ,
Exp./Frt.
21.95*

GRA-2000-1, optional digital clock
module, $1 \mathrm{lb} .$, mailable
e . .29.95*

Christmas gift for

 your listGive your scientist，engineer or stu－ dent a gift he＇ll use all year long． Finger－sized keys and 8 bright $1 / 2^{\prime \prime}$ dig－ its make it easier to use than pocket calculators．Cumulative memory and register exchanges virtually eliminate scratchpad work．Performs arithmetic plus trig and arc trig in degrees or radians，common and natural logs，
powers of e ， square roots， inverses，pi and exponential functions．
Kit IC－2100， 4 lbs．， mailable ．．119．95＊

Unique New Heathkit AM／FM Digital Clock Radio

Our outstanding clock radio makes even sleepy Santas happy．

The electronic clock with snooze alarm features a gentle＂beep＂with adjustable volume．Or wake to the component－quality $A M / F M$ radio． Standby batteries（not included）keep the clock on time during power inter－ ruptions．Kit GR－1075， 10 lbs ．，mail－ able ．．．．．．．．．．．．．．．．．．．．．．129．95＊

New Heathkit Aircraft Strobe

A bright idea for the pilot on your list －or for anyone who needs an emerg－ ency marine or marker light．It meets FAR 23.1401 and assembles easily in just one evening．For 12 VDC neg．ground． With clear lens， optional red and red／clear lenses available． Kit OL－1155， 3 lbs．， mailable ．．．．54．95＊

Learning＇s Fun With Our New

 Heathkit＂Electronics Workshop＂The JK－18A teaches kids electronics the easy learn－by－doing way． 35 excit－ ing projects include light meter，sound meter，transistor radios．For safety， it＇s battery powered and requires no soldering． （Batteries not included）Kit JK－18A， 10 lbs ． mailable ．．34．95＊

New Heathkit Electronic Clock／Timer for Car， Boat or Plane

A timely gitt－
an electronic clock and a 20－hour rally timer，both with quartz crystal accur－ acy．Bright $1 / 2^{\prime \prime}$－tall digits dim automa－ tically at night． 12 VDC，mounts on or under dash．Kit GC－1093， 2 lbs．，mail－ able ．62．95＊

Two Heathkit Electronic Clocks with Standby Power

Two beautiful gifts－the GC－1092A is a clock with a snooze alarm；the GC－ 1092D reads the time in 6 digits，the month and date in 4 digits．Both have standby power to keep the clock on time without the display even during temporary power interruptions．（Bat－ teries not included．）Kit GC－1092A or D， 5 lbs．，mailable ．．．．．each 82．95＊

Heathkit Exhaust Analyzer Checks Your Car＇s Tune Up

Make everyone＇s Christmas whiter and cleaner－be sure your tune up is help－ ing clean up the environment．Big $41 / 2^{\prime \prime}$
 meter reads relative combustion efficiency， air－fuel ratio and percentage carbon monoxide． Kit CI－1080， 6 lbs．，mailable ．．．61．95＊

Compare the features:

- Dual-trace with true X-Y capability
- $1 \mathrm{mV} / \mathrm{cm}$ vertical sensitivity over the full bandwidth
- Post-deflection accelerated CRT for bright trace, fast writing
- Vertical amplifier delay lines for pulse analysis capability
- Digitally controlled triggering for exceptional stability
- Typically triggers up to 45 MHz - guaranteed to 30 MHz

It offers a lot more than just a low price

The Heathkit $10-4510$ is your best 'scope buy for two good reasons-it does more and it costs less.
Time base sweep up to $100 \mathrm{nsec} / \mathrm{cm}$. There's always a reference baseline, even when there's no trigger signal. The time base can be precisely triggered at any point along the positive or negative slope of the trigger signal. In automatic mode, it triggers at the zero crossing point.
Modes of display. Either channel can be displayed as a function of time or both can be displayed together. In X-Y operation, channel 1 provides horizontal deflection and channel 2
provides vertical deflection. There are 22 calibrated time bases from $0.2 \mathrm{sec} /$ cm to $0.1 \mu \mathrm{sec} / \mathrm{cm}$. The sweep speed is continuously variable between switch positions. Any speed can be expanded five times by pulling out the control knob.
For easy calibration, a 1 volt peak-topeak square wave is available on the front panel. The regulated supply operates from 100-280-volt AC power. Kit 10-4510, 34 lbs., mailable 549.95*
Assembled SO-4510, factory-wired \& calibrated version of the 1O-4510, 34 lbs., mailable
.750.00*

New Low-Cost Heathkit Function Generator

A true function generator, not an oscillator, delivers sine, square and triangle waveforms from 0.1 Hz to 1 MHz . Short-proof output supplies 10 volts peak-to-peak into 50 -ohm load. A calibrated step attenuator adjusts from $0-50 \mathrm{~dB}(10 \mathrm{~V}$ to 30 mV$)$ in 10 dB steps. A variable control provides up to 20 dB of additional attenuation at
each step. Attenuator accuracy is ± 1 dB ; frequency accuracy is $\pm 3 \%$. Nonlinearity of the triangle waveform is 5% max., symmetry is within 10%. Sine wave THD is 3% max. from 5 100 k Hz . Square wave rise and fall times are 100 nsec max. 105-130 or 210-260 VAC. Kit IG-1271, 7 Ibs., mailable
.99.95*
Assembled SG-1271, factory-wired \& calibrated version of IG-1271, 7 lbs., mailable
140.00*

projects－timed ior

Coming in December．．

A new
 generation of Heathkit ham radio equipment

New Heathkit SB－104 transceiver

Years shead in design \＆features－the SB－104 is a complete rethinking of what a CW／SSB transceiver should be．It utilizes the latest digi－ tal \＆solid－state technologies．The＂104＂is com－ pletely solid－state from the front end to the RF output．
Totally broadbanded．You can switch from 3 to 30 MHz without preselector，load or tune con－ trols．
True digital readout with 6 bright digits to indi－ cate the frequency with accuracy to 100 Hz ．
Mobile－res dy．The SB－104 operates from 12 VDC，so it＇s ready to go mobile when you are． Optional features include a plug－in digital noise blanker and 400 Hz crystal filter for CW．
Just about the only things that aren＇t totally new about the＂ 104 ＂are the quality and easy assem－ bly that have made Heath famous Kit S8－104． 31 lbs．，mailable ．．．．．．．．．．．．．．．．．．．669．95＊ Klt SBA－104－3， 400 Hz CW crystal filter for SB－ 104， 1 lb．，mailable ．．．．．．．．．．．．．．．．．．．．．．．． 34.95 Kit SBA－104－1，digital noise blanker for SB－104， 1 lb．，mailable ．．．．．．．．24．95 Kit SBA－104－2，mobile mount， 6 lbs．． mailable ．．．．．．．．．．．．．．．．34．95＊

New Heathkit SB－230 1 kW conduction－cooled linear

High－power match for the SB－104．Lowest cost conduction cooled linear on the market． 1200 watts PEP and 1000 watts CW from less than 100 watts input．It＇s also rated at 400 watts in－ put for slow－scan TV and RTTY．And absolutely silent－no blowers，no fans．
Full metering of relative power，plate current grid current and plate high voltage．Safety fea－ tures include microswitch interlocks for top and bottom shells，thermal shutdown，fused cathode， on／off switch with circuit breaker for power transformer．
On the air in $\mathbf{1 5}$ to $\mathbf{2 0}$ hours．Fast，easy assem－ bly，then check it out with an ohmmeter－no alignment necessary．Kit SB－230， 40 Ibs．，mail－ able

319．95＊

New Heathkit SB－614 station monitor scope

How clean is your signal？The bright $11 / 2 \times 2^{\prime \prime}$ screen helps you keep your rig in peak condi－ tion．Reveals a wide variety of operating prob－ lems－nonlinearity，insufficient or excessive drive，carrier or sideband suppression problems， regeneration and key clicks．Monitors AM，SSB and CW signals up to 1 kW from 80 to 6 meters． Kit SB－614， 17 lbs．，mailable．

New Heathkit 5－Function SB－634 station console

Five accessories in one－a 24 －hour 6－digit electronic clock，a ten－minute digital ID timer with visual and／or audible alarms，RF watme－ ter，SWR bridge，hybrid phone patch with man－ ual and VOX controls．Kit SB－634， 14 lbs．，mail－ able

179．95＊

New Heathkit SB－644 remote VFO

Designed exclusive for SB－104，it provides the ultimate in multi－mode operation with two crys－ tal sockets for fixed frequencies．No modifica－ tions－just plug the VFO into the＂104＂and go －VFO frequency even reads out on the 104＇s digital display．Kit SB－644， 10 lbs．，
mailable
119．95＊

New Heathkit Fixed station AC power supply

Powers the SB－104 from 120 or 240 VAC．So－ phisticated regulation assures almost no change in voltage from no load to full load．Entire sup－ ply fits inside SB－604 speaker cabinet．Kit HP－ 1144， 28 lbs．，mailable

89．95＊

New Heathkit SB－604 station speaker

Response－tailored to SSB and designed to match the SB－104．Large enough to house HP－1144 AC power supply Kit SB－604， 8 lbs．，mailable ．．．．29．95＊

HEATHKIT ELECTRONIC CENTERS－
Units of Schlumberger Products Corporation Retail prices slightly higher
ARIZ．：Phoenix；CALIF．：Anaheim．EI Cerrito，Los Angeles．Pomona．Redwood City．San Diego（La Mesa）．Woodland Hills；COLO．：Denver；CONN． Hartford（Avon）；FLA．：Miami（Hialeah），Tampa； GA．：Atlanta；ILL．：Chicago，Downers Grove；IND． Indianapolis；KANSAS：Kansas City（Mission）；KY Louisville；LA．：New Orleans（Kenner）；MD．：Balti－ more．Rockville；MASS：Boston（Wellesiey） MICH．：Detroit；MINN．：Minneapolis（Hopkins） MO．：St．Louis（Bridgeton）：NEB．：Omaha；N．J． Fair Lawn：N．Y．：Buffalo（Amherst）．New York City． Jericho，LI．Rochester，White Plains；OHIO：Cin cinnati（Woodlawn），Cleveland，Columbus：PA． Philadelphia，Pittsburgh；R．I．：Providence（War wick）；TEXAS：Dallas．Houston；WASH．：Seattle ＇NIS．：Milwaukee．

Heath Company，Dept．20－12
Benton Harbor，Michigan 49022
HEATH
Schlumberger
Send for your FREE 1975 catalog today．
Please send my free 1975 Heathkit Catalog．
Please send the merchandise checked below．I＇ve enclosed \＄ ，plus shipping，in payment．

\square GR－500 Color TV

\square GRA－500－1 TV Cabinet
\square GRA－500－2 TV Cabinet
\square GR－400 Color TV
\square GR－300 Color TV
\square GRA－403－18 TV Cart
\square GRA－2000－1 Digital clock module
\square IC－2100 Calculator
－CI－1080 Exhaust analyzer \square GR－1075 Digital clock radio
\square GC－1093 Digital car clock／timer
\square JK－18A Junior electronics workshop
\square GC－1092A Digital clock with snooze alarm
\square GC－1092D Digital clock with date display
IO－4510 Oscilloscope（kit） SO－4510 Oscilloscope （assembled）

[^6]
SPECTACULAR 25 ${ }^{\text {th }}$ ANNIVERSARY SALE!

Incredible Savings Free Foothall

TEST EQUIPMENT

Model WV 98C
Senior VoltOnmyst * List \$109.00
Our Price $\$ 88.50$

Model WT-333A
Picture Tube Tester/Rejuvenator List $\$ 199.00$
Our Price $\mathbf{\$ 1 6 2 . 5 0}$

Digital Meters

B\&K 281 List \$169.95
B\&K 282 List 199.95
Leader LDM 850 List 359.95

Our Price \$144.50
Our Price 169.97 Our Price 305.96

try this

PENCIL IRON REPAIR

Has that small pencil iron fallen off of the workbench for the last time, its plastic socket container broken and the shell socket is exposed? If so, it probably looks like the "before" photo.

Don't throw this pencil iron holder away. Take a tuhe of silicone rubber bath tub seal, which can be purchased

SERVICE AIDS

Castle Mk V Master Subber . $\$ 144.50$ 47.00

Castle MK IV A
Telematic MAP 3500 Transverter 37.95

Mura NH 452000 ohm VOM 7.95

PARTS

Sarkes Tarzian Tuner 3 for $\$ 15.00$
IR-D004 Dual Diodes . 20 for 5.00
IR-R170 2.5 AMPS . 40 for 5.99
IR-Focus Rect 6500 PIV
10 for 8.00
Telematic CR 25090° Color Booster 4 tor 18.00
Workman FRTV Universal Color Degaussing Kit 3 for 5.97
Thordarson Yokes
Y94 (Philco equiv)ea. e. 8.95
Y 105 (Universal equiv.)ea. 8.95
Y 130 (Zenith equiv.)

Full Line of All Popular Brand Test Equipment Drastically Reduced EICO B\&K SENCORE LEADER RCA HICKOK

1000's of Name Brand Items. Check These Typical Values.

TUBES (ICC/Servicemaster)

3 A3	10	for	\$10.00	6JE6	. 10 for	22.00
3 AT2	. 10	for	9.80	$17 \mathrm{JZ8}$. 10 for	9.50
6BK4	10	for	19.50	2329	. 10 for	12.00
6CG7	10	for	7.20	33GY7	10 for	16.00
6DW4/6CL3	10	for	9.20	38 HE 7	10 for	18.00
6EA8	10	for	9.50	6GH8	50 for	34.00

Complete inventory of ICC/Servicemaster and Raytheon tubes
FREE 48 pg Discount Catalog
FREE regulation football with every order of $\$ 100$ or more accompanied by this ad

Minimum Order: $\$ 50.00$

Send Check or Money Order. Add $\$ 1.00$ for Shipping and Insurance

Radio Supply Co., Inc.
558 Morris Ave.. Bronx, N. Y. 10451 Tel: (212) $585-0330$

AUDIO FEEDBACK CIRCUITS

（continued from page 87）
Both the boost and cut circuits are in the operational amplifier circuit and Equation 10 does apply．Converting R1，R3 and R1 mathematically from a＂tee＂to a＂delta＂ configuration to facilitate analysis，will yield a corner boost frequency at $\mathrm{f}_{\text {obe }}$ and a corner cut frequency at fone．They are both equal to $1 / 6.28 \mathrm{C} 5(\mathrm{R1}+2 \mathrm{R} 4)$ ．

The intermediate settings of the control will yield inter－ mediate amounts of treble boost and cut．As was the case with the bass control，the corner frequency is shifted away from the center frequency when less boost or cut is re－ quired at the upper ends of the band．The setting of the control will not affect the center or low frequency regions of the band．

The value of C5 was set at about $100-\mathrm{pF}$ ，so it would not load the input circuit excessively and yet be large enough not to be affected by stray capacitances in the circuit．
$\mathrm{f}_{\text {ons }}$ was chosen for about 16 dB of boost at $10,000 \mathrm{~Hz}$ ． An approximate curve used to determine the corner fre－ quency is shown in Fig．9．At the maximum setting of the control， $\mathrm{f}_{\mathrm{ote}}=\mathrm{f}_{\mathrm{otb}}=1.5 \mathrm{kHz}$ ．Since R 1 and C5 are already known，R، is calculated to be about 500,000 ohms．

R5 must be made as small as practical when compared to the reactance of CS at the highest audio frequency that must be boosted．A 500,000 －ohm linear center－tapped po－ tentiometer was found to be satisfactory．

A low－gain amplifier or lower impedance bipolar transis－ tor are frequently used in the feedback tone control circuit in place of the JFET．As these components cause the operational amplifier to differ radically from the ideal，the components must change from the calculated values to pro－ duce results similar to those outlined above．The circuit should be designed in the laboratory in this case．Since the function of each component has been detailed，the effects of changing a component is known and the design proce－ dure does not have to be haphazard．

A complete tone control circuit has been drawn in Fig． 10 showing the bass and treble controls．The following fac－ tors affecting the various functions of the control should be noted．

The amount of boost and cut produced by the treble control is affected by R4 and C5．Make either compo－ nent larger if more treble action is required．To a lesser de－ gree，increasing R1 increase the amount of treble boost， while increasing R3 affects the size of the treble cut．

As for the bass circuit，C3 and R3 must be increased to further emphasize the boost while C2 and R1 must be in－ creased to accentuate the cut．

R－E

MOS SHIFT REGISTERS

（continued from page 62）
correlators，and Fourier series calculators．And，as a final and obvious application，shift registers are being used to replace magnetic dises as medium－speed，high－density storage systems for computers．These are often called silicon disc files．

Getting started

If you are new to shift registers，pick up a few of the bargain surplus units and try experimenting with them．You＇ll get best results if you stick with the static units at first and avoid the older metal gate ± 15 volt circuits as they are hard to interface． Remember to pick up several units at once if you are buying seconds．Above all，have the exact data sheet on hand，and if possible，some application notes as well．Be sure to have your power supplies well decoupled and regulated and make sure your clock lines and drivers exactly meet the specified require－ ments．Keep your clock pulse widths down around the mini－ mum recommended values to minimize internal heating and try to derive the clock widths and spacing from digital logic and timing rather than using adjustable monostable delays．R－E

Beys bive PRINTED CIRCUIT KIT Makes circuits THREE WAYS

> CAMERA
> OARKROOM FILM CUTTING TRACING

USES DATAK＇S POS－MEC PAOCESS TuEs DATAK POS－NEO PROCESS The revolutionary photepraphie way thot mates PERFECT printed clicelits frow orighal art or a privitel peop．

ER－4 COMPLETE PHOTO ETCH SET

ER－3 $/ 4$ pound dry etchant－refill

AT YOUR DISTRIBUTOR OR DIRECT

the DATAK corp． 6571 st St．• Guttenberg．N．J． 07093

Circle 79 on reader service card

Accuracy like a VTVM．．． Convenience like a VOM．．．
 NEW BATTERY－OPERATED FET SOLID－STATE VOLT－OHMMETER $=116$

Easy－to－build KIT
$\$ 36.90=116 \mathrm{~K}$
Factory－Wired \＆Tested
$\$ 40.49=116 \mathrm{~W}$

Now you can get all the benelits of a VTVM（laboratory accuracy，stability and wide range）but with its drawbacks gone： no plugging into an AC outlet，no waiting or warm－up，no bulkiness．New Field Effect Transistor（FED）design makes possible low loading，instant－on battery－ operation and small sire．Excellent for both bench and field work．
Cempare these valuable features：
－High impedance low loading： 11 meg－ ohms input O：DC， 1 megohm on AC 500 －times more sensitive than a standard 20,000 ohms－per－volt vom ．Wide－range versatility： 4 P．P AC vollage ranges：0－3．3， 33，330， $1200 \mathrm{~V} ; 4$ RMS AC voltage ranges： $0-1.2,12,120,1200 \mathrm{Y} ; 4 \mathrm{DC}$ voltage ranges： $0-1.2,12,120.1200 \mathrm{Y} ; 4$ Resistance ranges： $0.1 \mathrm{~K}, 0-100 \mathrm{~K}, 0.10$ meg．； 0.1000 meg．；
4DB ranges：-24 to +56 Dg 4D8 ranges：-24 to +56 DB ．
Sensitive easy－to－read 41／2＂ 200 micro－ amp meter．Zero center position avail－ able．Comprises FET transistor， 4 silicon Iransistors， 2 diodes．Meter and tran－ sistors protected against burnout．Etched panel for durability．High－impact bake－ lite case with handle useable as instru－ ment stand．Kit has simplilied step－by－ step assembly instructions．Both kit and factory－wired versions shipped complete with batteries and test leads． $51 / a^{\prime \prime} \mathrm{H}$ x $674^{\prime \prime} W \times 27 /{ }^{\prime \prime}$ D． 3 lbs．

Fast...Flameless CONCENTRATED HEAT up to $1000^{\circ} \mathrm{F}$.

MILWAUKEE

HEAT-BLO GUN

The Heat Gun of a Thousand Uses

A model for every need ranging from 150° to $1000^{\circ} \mathrm{F}$., without an open flame. Safe and easy to operate ... use wherever concentrated heat is needed. Fingertip switch control permits operator to aim heat right at desired point. Temperature can be varied by air intake adjustment. Also blows cold air when desired.

MEETS DOZENS OF NEEDS in laboratory and on production lines...softens plastics...dries paint, glue or photo prints...thaws .defrosts... heat seals ... does blister packs... preheats for welding or soldering...desoldering...excellent for softening, repairing and retexturing molded plastics...shrinks vinyl to fit upholstery.

Sturdy adjustable metal stand permits positioning on bench or machine, on assembly lines, etc.

MILWAUKEE LOCK \& MFG. CO.
 5078 N. 37TH STREET - MILWAUKEE, wIS. 53209

Circle 80 on reader service card

 Distributed nationally. Call your local office for a demonstration AL (205) 533.5896 AZ (602) 994.9519 CA/N (408) 733.9000 CA/s (714) $540-7160$ CO (303) 449.5294 CT (203) 525.7647 FL (813) 294.5815 GA (404) 457.7117 HI (808) $262.62 \mathrm{B6}$ IL (312) 593.0282 IN (317) 293.9827 MA (617) 273.0198 MO (301)792-8661 MI (313) 482.1229 MN (612) 781.1611 MO $w(816) 737.0056$ MO/E (314) 731.2331 NC (919) 787.5818 NJ/s (215) 925.8711 $N J / N(201) 863.5650$ NM (505) 265-6471 $N Y / N(315) 446.0220$ NY/S (516) 482.3500 $\mathrm{OH} / \mathrm{N}(216) 725.4560$ OH/5 (513) 298-3033 OR (503) 238.0001 $T X / N(214)$ 234-4137 $T X / \$(713) 461.4487$ UT (801) 268.3181 WA (206) 763.2210 CAN W (416) 187.1208 CAN/w (613) 772.5874 CAN/E (514) 731.9328

MINICOMPUTER MODIFICATIONS
(continued from page 85)
is executed by the computer. The second input port on the Input Multiplexer Board will not be used.

Data is now input to the computer on eight input lines using either a three-state or open-collector bus and data is strobed on the bus from the selected source. Since the multiplexer will switch to input data with every input instruction, we still need some method of selecting the data source. Instead of using the output port and decoders we can use the in signal and decode the MMM bits in the input instructions, 0100 M MM1. This gives the capability of up to eight input ports on the Mark-8. We will need eight gates on each input port, one per bit of information and these should be either SN7403 types for the open collector bus or DM8095 types for the three state bus. The additional circuitry is shown (Fig. 2 and 3) and the Input Port Code and in signal are nored together to activate the selected eight bit input port. An example of each type of bus is also shown in Fig. 3.

Fig. 3

In both of the bus examples we have used inp 3 to activate the selected device. The open-collector bus used SN7403 gates and since these will invert the data, we invert it again before it is input to the computer. Pull-up resistors must be used and the in and Input Port Code 3 were NORed together using an SN7402 quad two input NOR chip. The three-state bus example used DM8095 three-state gates where the NOR gate is included on-chip just for this gating purpose. In and Input Port Code 3 are applied directly to the DM8095. These gates do not invert the data and pull-up resistors are not needed.

We must modify the Input Multiplexer Board slightly so that the eight input lines of Input Port 0 are activated on each input instruction. Input port 0 now becomes the bus input and input port 1 is not used. Input ports zero through seven are now constructed with external gates and use the in and Input Port Code to select the set of gates to input data. Remember, port 1 is no longer on the board.

To modify the multiplexer, remove IC-7, the SN7442 decoder, and using the IC solder pads, connect a jumper from hole 1 to hole 8 (ground), and connect another jumper from hole 2 to hole 16 (+5 volts). This will disable the input port 1 lines and cause the multiplexer to switch to the input port 0 lines whenever an input instruction is executed.

BUY BROOKS FOR PROFITABLE SALES

FREE $\$ 1$ BUY WITH EVERY 10 YOU ORDER Only applies to＂$\$ 1$＂Buys

FREE GIFT WITH EVERY ORDER
CANADIANS：Ordering is easy－we do the paperwork－try a small order

WESTINGHOUSE ALL TRANSISTOR HOME／OFFICE MESSAGE CENTER

Leaves messages for other for replay
Built in speaker／ microphone for talk－into convenience Records up to 3 minutes of messages ．．Illuminated signal shows when a message is waiting．Coltrol adjusts playback volume without
affecting recording volume ．．Capstan Drive： BRAND NEW SOLD AS IS

SHANNON MYLAR RECORDING TAPE

$\square 110^{\circ}$ TV DEFLECTION YOKE 4^{95}
＂COMBINATION SPECIAL＂
RGA 10° FLYBACK plus 110° DEFLECTION YOKE
90° FLYBACK TRANSFORMER 2^{95} Por all Yype TV＇s incl sclumal
90° TV DEFLECTION YOKE
for all cyne TY＇s incl chematic 3^{9}
OOF FLYBACK TRANSFORMER 2^{00}
70° TV DEFLECTION Yochematic 2^{0}
SHARP 110° FLYBACK ${ }^{\text {In }}$
YOKECOMBINATION XAFT
90° COLOR YOKE For all
Misertungular 19：to 25°
70 COLORE YOKE
SPor all round color＇＂IIT＇MODE
 ＇rotection Full Range－＇omplet
Mith test leads Manumb
TOR TYPE Model＝ 85NA 2
4－TV ALIGN ENT TOOLS 10
FOR TV ALIONMENT TOOLS
For Color TV \＃2
SARKES TARZIAN TUNER

41 mc
Latest Compact Model good for all 41 mc TV＇s． BRAND NEW－

Best TUNER＂SARKES TARZIAN＇ ever made－last word for stability definition \＆smoothness of operation An opportunity－to improve and bring your TV Receiver up－to－date． Complete with Tubes 795

WESTINGHOUSE FM TUNER

 WESTINGHOUSE FM TUNER （121）T8 Tube） sed in all TV setsTransistor（Guided Girid PHILCO TV TUNERS WEL－75－13983－3（5¢JT－3H（25） \＃TA 120－1（4GAi－2HAT Tubes） G．E．－TV TUNER（シGK5－4LI8） 2－ELECTROLYTIC Condensers 20075 mid－300 ${ }^{20} 0 \mathrm{mrd}-2 \pi$ $300 \mathrm{mfd}-200 \mathrm{~V} .200 \mathrm{~V}$ PHILCO UHF／VHF TUNER Transistorlzed ET 86x196．（6GK5－6BL8） Approved 6^{\prime} set mounting ．．． 5 section rods eplacement for most color TV＇s COLOR CONVERGENCE Assy． COLOR－TV RECTIFIER－I sed 2 COLOR－TV CRT SOCKETS Wired leads．for all color TV＇s
3－RCA 110° CAT SOCKETS

IMMEDIATE DELIVERY
HANOY WAY TO OROER

Please specify refund ．Send check or money order，add extra for shipping．Lists of new offers will be returned in your order．

MARKET SCOOP COLUMN

Test Equip．Special Discount Prices

250－ASST SOLDER

\square^{1}assorted typex good，bat 25－SYLVANIA $100 \mathrm{MFD}-400 \mathrm{~V}$

$\mathbf{2 0 / 2 0}$ MFIV－450V $5-9$ VOLT OTORS

 1 amp．： 1000 PIV deneral purdose．TO－5$70^{\circ}$ COLOR TUBE
90° COLOR T
90° COLOR T
2SO－ASST WOOD SC
rinest popular seloction
250－Asst Self Tapping SCREWS
\＃ 6 ．Ass，etc．
100－ASST 6／32 SCREWS

\squareand $100-8 / 32$ HEX NUTS 100－ASST $2 / 56$ SCREWS 100－ASST 4／40 SCHEW alld 100－4／40 HEX NUTS OO－ASST 5／40 SCREWS 500－ASSORTED RIVETS most useful selected sizes
300 ASSORTED WASHERS 100－ASST RUBBER BUMPER $100-$ Asst RUBBER GROMMETS
－ELECTROLYTIC CONDENS． ERS $80 / 100 / 60$ MFI）－ 160 V －ELECTROLYTIC COND 100 8－TRACK TAPE Playback Deek 27 3－ELECTROLYTIC COND 32＇－TEST PROD WIRE
DELUXE QUALITY red d．black
100 10^{95} 15－mini 456 KKC IF Transformers 100 2－12BH7 RCA value ELECTROLYTIC CONDENSERS 200／200 mfrl．－ 200 －EELECTROLYTIC COND 500 mfd．－ 35 S
$5^{\prime \prime}$ SPEAKER

$$
\begin{aligned}
& \text { with outpur transformer } \\
& \text { I2 UNIVERSAL SPEE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I2 ONIVERSAL SPEAKER } \\
& \text { Top qually . . Large Magut }
\end{aligned}
$$

IO PHILCO SPEAKER

$$
\begin{aligned}
& \text { Top Quality Large Maruet } \\
& 8^{\prime \prime} \text { UNIVERSAL SPEAKER- }
\end{aligned}
$$

Iarge Magnet-..special iby
4" UNIVERSA

$$
5-10 K-2 \text { WATT BIAS POTS }
$$

 Large maknef ．．．Sperial lid＇y RONETTE Steren Cartridge lateat dual sapphire flimover whe 2^{00} Sterso Headphones Ift－Fi fuallty 595 O－STANDARD TRANSISTOR NTN NPN ？？ 404 ．2N414．elc． SPEAKEA CEAVY OUTY 1002. VARCO Stereo Cartridge－CN－72 With mounting bracket．fliporer $\mathbf{2}^{95}$ ELECTROLYTIC CONDENSER 15－DIPPED 01－finay

$$
\begin{aligned}
& 01 \text {-fiñ } \\
& \text { I5-DIPPED MYLAR CAP. }
\end{aligned}
$$

$$
\begin{aligned}
& 033-6 \text { EnN } \\
& 15-\mathrm{DIPPE}
\end{aligned}
$$

I5—D IPPED

$$
\begin{aligned}
& \text { n03:3-1000V } \\
& 15-0 \mid P P E D
\end{aligned}
$$

n4i-4
is-molded

$$
\begin{aligned}
& \text { 15—DIPPED MYLER Condensers } 10 \\
& 003!100 \mathrm{~S}^{\prime}
\end{aligned}
$$

TACHOMETER 21/4" Sa. Pane

$$
\begin{aligned}
& 2^{21 / 4} \text { " Sa. } \\
& \text { full scale } \\
& -6000 \text { R. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Toter 1-vibe, full scale } 33 \text { ohmi } 2^{00} \\
& \text { col! resistanee } \theta-6000 \mathrm{R} \text {.l. } \mathrm{M} \text {. }
\end{aligned}
$$

$$
\text { 1-CASSETTE type dynamie mike } \mathbf{7}^{99}
$$

$$
\begin{aligned}
& \text { with universal plugs- } 000 \text { ohms } \\
& \text { In-SETS PHONO PIUGS }
\end{aligned}
$$

10-SETS PHONO PLUGS \&

$$
\begin{aligned}
& \text { PIN JACKS JRCA tyne } \\
& \text { 8-MINI PILOT BUL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8-MINI PILOT BULBS WIth } \\
& \text { yor Leads-f,3V 30MA (5000 H }
\end{aligned}
$$

$$
\text { 8-MNI PILOT BULBS With } 12
$$

\square TORCHED PAIRS TRANSIS－ 100
KNOB SPECIAL
 TRANSISTOR RADIO
asst type KOod，bad．broken．
as－Is，pollurlk
TAPE RECORDER
1^{50} broken，as－1s：
200 ASST． $1 / 2$ W RES Luck
RESTORS Ton Brands．Short Leads． Excellent Selection 75－A88T $1 / 4$ WATT RESISTORS 100 stand，choice ohmages，some in 5 ／r
$100-A S S T$ WATT RESISTORS stand．cholce ohmages．some in 5＂c
70 －ASST । WATT RESISTORS stand，choice ohmages，some in 5% 35－ASST 2 WATT RESISTORS stand．cholice ohmares．some in 5%
50－PRECISION RESISTORS SO－PRECISION RESISTORS asst．list－price $\$ 50$ less 98% 20－ASSORTED WIREWOUND RESISTORS．S， 10,20 Watt
IO－ASST SLIDE SWITCHES 10－ASST SLIDE SWITCHE
SIST．SPDT，DPDT．etc． For Trandsiors 20－ASSORTED TV COILS I．F．VIUEO．sound Tadio．el 200／300／100／100 MF゙）－25 I－ELECTROLYTIC COND $1-6^{\prime \prime} \times 9^{\text {H }}$ Heavy Outy 10 10－ASST DIODE CRYSTALS 1N34， 1 N48，1N60，1N64，etc general purpose．TO－5 rase IIg ISSORTED TRANSISTOR TV TWIN LEAD－IN IO－MINI ELECTROLYTIC CON UHF or VHF Matehing Trans． －ELECTROLYTIC COND
RMS－9 ELEMENT COLO OUTDOOR ANTENNA －Polarized CHEATER CORO
Colorburst o comen 2－Colorburst Quariz－Crystal 5 ASST GLOBAR VARISTOR Popular replacements for

साGD

ZENITH
fart \＃221－39
ilicen NPN HV TRANSISTOR （C＇A－8K－3021－Hep－240 $\quad \mathbf{1}^{69}$
Transistor Specials－Your Choice
SK3006，SK3018，SK3020 $\mathbf{N K}^{2}$
Transistor Specials－Your Choice 19
SK3009，SK $30 \% 4$, SK 3040
Outdoor／Indoor MN INI SPEAKER
Outdoor／Indoor MINI SPEAKER
＂u－1 Oz．Marnet－8 Ohms－
CONVERGENCE RECTIFIER－
For COLORTV 4 cell－ 10
TV DAMPER DIODE Single－
Heplace HCA part \＃ 120818 bual－HCA part \＃ 13593 ． TOSHIBA Cassette Stereo Deek Model KT－403DC Hecord \＆
Clay liack Tuner－Mate KT．730 I＇ortahle＂substi－Tuner＂－$\quad 38^{50}$
Instant Tuner Check
EJ－190－Master Rigs－Nigs
＂ombo Rigs－Econo Kigs 9^{9}
SPEAKER－7 WAY SELECTOR 16
STEREO MICROPHONES
FH 1979／01 Made in Holland sFeT 6^{50}
25^{\prime} Shielded MIKE CABLE 100
SO－ASSORTED FUSES 100
50－RADIO TV SOCKETS 100

$\begin{array}{ll}\text {（10）2n－4n OHM Imped．）} & \\ 25 \text {－MICROPHONE CABLE } & 189 \\ \text { Ineluxe．}\end{array}$
COLOR POWER ronductor shlelded
－diond for most sefs 2fRR150 6^{95}
TUBE CONTINUITY CKR．
Indel FT425
Thests fuses，heapees．lamps．Fic， 198
KLEPS＂CLEVER＂TEST PROOS Third－hand＂teat procks．reach into out of way places－Insulated＂－cannot Rlip acrommodates hare wite o

Thanana plug－mo soldering．

\square PRUF 10—

\square Versatile Test Probe
KLEPS 10－
Boathook Clamp
KLEPS Clamp 4娄＂long 89^{c}

Boathook Clamp $7^{\prime \prime}$ long
KLEPS 30－
flexible－forked Tongue 6^{w} long 1^{7}
KLEPS 40 FLEXIBLE．PC
Board Torminals $61 /{ }^{\text {win }}$ Ions
KLEPS I－ECONOMY
KLEPS I－ECONOMY
KANDU－Printed Cireuit Kit
Trace \＆Etch your own circults－ 7^{95}
casy to use Instructions 4－50 HAN IMs ructions gissorted colors
100° GREY SPEAKER WIRE 100＇GREY SPERKER WIRE2^{00}
100 10－ASST RADIO \＆TVTUBES
Brery Tuhe a good number 5 －Audio Output TRANSFORM Suh－min tor Trans fiadios
5－I．F．Coil TRANSFORMERS 100
456－ke por Transistor Radios
6 $^{\text {m }}$ UNIVERSAL SPEAKER
Top quality Sperlal buy
1^{29}
ALL AMERICAN TUBE KIT

2－ELECTROLYTIC COND
$40 \mathrm{~m} / \mathrm{d}-500 \mathrm{~V}, 40 \mathrm{mfl}-400 \mathrm{~V}$
100
Minimum Order $\$ 5.00$
choice）with advantage to customer 212－874 5600
TELEPHONE
Circle 78 on reader service card
minatume aluminum Election rtic capacitors
 1 AMP SILICON RECTIFIERS moon so PN 12/31 100/86 1000/s8 Ime007 1000 PN 6/81 100/311 1000/580
SILICON SIGNAL \& SWITCHING DIODE mu188 (mplu equiv.) 12/81 100/57 1m/350 sm/5220 LED 7 SEGMENT DISPLAYS $\begin{array}{lllll}\text { Datailt } 700 & 31 " . & 31.60 & 10 / 833 & 100 / 3100 \\ \text { Datailt } 707 & 31 . & 83.50 & 10 / 33 & 100 / 5300\end{array}$ REED RELAY
6 AMP Cowtact s votraama coll 32.00 10/815 100/313 4 AMP SLIDE SWITCHES MO....12x 10/31 100/88 DPOT....2sc 10.382 100/315 MOLEX SOLDERCON IC TERMINALS 10081 500/44.20 1000/48.20 5000/238.20 50.000/575 $1 / 2$ \& $1 / 4$ WATT CARBON COMP. RESISTORS
5 eoch of the 85 stondord 10% values (2.2-22M) $1 / 2$ W Resistors (425 pes.) Sorted by volve $\$ 12 / \mathrm{sed} 2-4$ ore $\$ 11 / \mathrm{set} 5-9 \mathrm{cres} \$ 10 / \mathrm{sot}$. 5 sach of the 70 stondard 10% volues $(10-5.64) 1 / 4 \mathrm{~W}$ Resistors (350 pcs.) Sortod by volve $\$ 12 / \mathrm{set} 2-4 \mathrm{cre} \$ 11 / \mathrm{sel} 5-9 \mathrm{ore} \$ 10 / \mathrm{ser}$. Mesistors abo araikble indiridually, in other asaoruments
 Mll.R.IIf opecification aypen

1130
1131

$\$ 5.00$

IC SOCKETS
Pin DIP Solder 35 14 Pin DIP Solder 45 C 4 Pin DIP Solder $\$ 1.2$

25 V. DISC CAPS

$$
\begin{array}{lrrrr}
\text { V} 160 & 1 & 10 & 10 c & 104 c \\
.01 \ldots & 5 c & 3.5 c & 3 c & 2.4 c \\
.022 \ldots & 6 c & 4 c & 3.5 c & 2.75 c \\
.047 \ldots & \% & 6 c & 5.3 c & 4.2 c \\
.1 \ldots . & 12 c & \% c & 7.5 c & 6 c
\end{array}
$$

SILICON TRANSISTORS

FIELD EFFECT TRANSISTORS

NPN DARLINGTON TRANSISTOR

 LINEAR INTEGRATED CIRCUITS

 747 Dip DUM OP MMP 3.10 100/510.50 748 minitp OP AMP.... OOC 10/5 5.50 DIGITAL TTL
 "Ionly Quality Ciomponents Sold
DIGI-KEY CORPORATION
P.O. Bon 126

Circle 85 on reader service card

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.15$ per word . . . minimum 10 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 70c per word . . . no minimum.
FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face at 10c per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10% discount on 12 consecutive insertions, if paid in advance. Misleading or abjectionable ads not accepted. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e. August issue closes May 26). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

WANTED

"WORKING" TV typewriter. Send price, Polaroid. BO8, 8556 Hillside, Hollywood, CA 90069
QUICK cash . . . for electronic equipment components, unused tubes. Send list now BARRY, 512 Broadway, New York, NY 10012, 212 Walker 5-7000

PLANS \& KITS

CONVERT any television to sensitive, bigscreen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $\$ 2.00$. SANDERS, Dept. A-25, Box 92102, Houston, TX 77010
FREE catalog. Most unusual electronic kits available. Music accessories, surf, wind synthesizers, wind chimes, many others. PAIA ELECT'RONICS, Box B14359, Oklahoma City, OK 73114
ELECTRONIC organ kits, keyboards and many components. Independent and divider tone generators. All diode keying. IC circuitry. Supplement your Artisan Organ. 35c for catalog. DEVTRONIX ORGAN PRODUCTS Dept. B, 5872 Amapola Dr., San Jose, CA 95129
AUDIO processing circuits . . . designs, kits, units. Laboratory tested designs for hobbyist through professional use-limiters, compressors, AGC's, equalizers, mixers, preamps, and more. Send now! Complete catalog for $\$ 1.00$ (refundable)-CIRCUIT RESEARCH LABS, 3920 E. Indian School, Phoenix, AZ 85018

BUSINESS OPPORTUNITIES

FREE giant below-wholesale catalog featuring national \& imported gift items. Unique opportunity of finding beautiful \& exotic gifts, novelties, toys. Thousand others. Rush 25 c for postage. JAAFRI INDUSTRIES, 9807 RE, Brookshire, Downey, CA 90240

ELECTRONIC ENGINEERING \& INSTRUCTION

ÉLECTRONICS book discounts. Save! Free selected, reviewed list. T/DOC, Box 340 Centerville, VA 22020

SELF-STUDY CB radio repair course. There's money to be made repairing CB radios. This easy-to-learn course can prepare you for a career in electronics enabiling you to earn as much as $\$ 16.00$ an hour In your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. 11-R, 531 North Ann Arbor, Oklahoma City, OK 73127
TV tuner repairs-Complete course details, 12 repair tricks. Many plans. Two lessons, all for \$2. Refundable, FRANK BOCEK, Box 3236 (Enterprise), Redding, CA 96001.

EDUCATION \& INSTRUCTION

DEGREE program in Electronics Engineering. Our 29th year! Free literature. COOK'S INSTITUTE, Dept. 14, Box 20345, Jackson, MS 39209.

SHORTCUT 10 success: Highly effective, profitable short courses (75 courses). Study at home. Diploma awarded. Our 29th year! Free literature, CIEE-E Box 20345, Jackson, MS 39209.

FOR SALE

JAPANESE transiators, wholesale prices, free catalog. WEST PACIFIC ELECTRONICS. Box 25837, W. Los Angeles, CA 90025.
LEARN design techniques. Electronics Monthly Newsletter. Digital, linear construction projects, design theory and procedures. Sample copy $\$ 1.00$. VALLEY WEST, Box 2119-A, Sunnyvale, CA 94087
"INSTRUCTION Manuals-Thousands available for test equipment, military electronics. Send $\$ 1.00$ (refundable first order) for listing. A service of TUCKER ELECTRONICS, Box 1050, Garland, TX 75040.'
EXCEPTIONAL 5-acre ranch. Lake Conchas, New Mexico. Only $\$ 995$ per acre. Vacation paradise. Good long-term investment. Easy terms. Free brochure. RANCHOS, Box 2007RE, Alameda, CA 94501
INCREDIBLE prices on integrated circuits thousands on hand. Gates 20c; 7447 89c; 7475 65c; 7490 75c, many more. Free catalog. JEFF ROSE, 3015 Eaton, Cleveland, OH 44122
CANADIANS-We stock a broad line of electronic parts, including most solid-state devices--Send for free flyer. DARTEK ELECTRONICS, Dept. R, Box 2460, Dartmouth Nova Scotia

INTERNATIONAL ELECTRONICS UNLIMITED

TTL

7400	$\begin{array}{r}\text { Ea } \\ \hline .19\end{array}$	7447	$\begin{array}{r} \text { Ea. } \\ \$ 1.15 \end{array}$	74141	$\begin{array}{r} \text { Ea. } \\ \$ 1.23 \end{array}$
7401	. 19	7448	1.15	74145	1.15
7402	. 19	7450	. 24	74150	1.09
7403	. 19	7451	. 27	74151	. 89
7404	22	7453	. 27	74153	1.29
7405	. 22	7454	. 39	74154	1.59
7406	. 39	7460	. 19	74155	1.19
7407	39	7464	. 39	74156	1.29
7408	. 25	7465	. 39	74157	1.29
7409	. 25	7472	. 36	74161	1.39
7410	19	7473	. 43	74163	1.59
7411	. 29	7474	. 43	74164	1.89
7413	79	7475	. 75	74165	1.89
7415	. 39	7476	. 47	74166	1.65
7416	39	7483	1.11	74173	1.65
7417	39	7485	1.39	74176	1.65
7420	14	7486	44	74177	. 99
7422	. 29	7489	2.75	74180	1.09
7423	35	7490	. 76	74181	3.65
7425	39	7491	1.29	74182	. 89
7426	29	7492	. 79	74184	2.69
7427	35	7493	. 79	74185	2.13
7430	22	7494	. 89	74190	1.59
7432	29	7495	. 89	74191	1.59
7437	45	7496	89	74192	1.43
7438	39	74100	1.65	74193	1.39
7440	19	74105	49	74194	1.39
7441	1.09	74107	49	74195	. 99
7442	99	74121	. 57	74196	1.85
7443	99	74122	. 53	74197	99
7444	1.10	74123	. 99	74198	2.19
7445	1.10	74125	. 69	74199	2.19
7446	1.15	74126	. 79	74200	7.95
LOW	POWER TTL				
74100	. 33	74151	. 33	74190	1.69
74102	. 33	74155	. 33	74191	1.45
74103	. 33	74171	33	74193	1.69
74104	33	74172	. 49	74195	1.69
74106	33	74173	. 69	74198	2.79
74L10	33	74174	69	741164	42.79
74120	. 33	74178	. 79	74L165	2.79
74130	33	74185	1.25		
74142	1.69	74186	. 69		
HIGH	SPEED	TTL			
74 HOO	33	74H21	. 33	74H55	39
$74 \mathrm{HO1}$	33	74H22	33	$74 \mathrm{H60}$. 39
$74 \mathrm{HO4}$	33	74H30	33	$74 \mathrm{H61}$. 39
74H08	.33	74 H 40	. 33	$74 \mathrm{H62}$	39
74H10	33	74H50	33	74H72	49
$74 \mathrm{H11}$. 33	74H52	33	74H74	. 59
74H20	. 33	74H53	. 39	74H76	59
8000 SERIES TTL					
8091	. 59	8214	1.69	8811	. 69
8092	59	8220	1.69	8812	1.10
8095	1.39	8230	2.59	8822	2.59
8121	. 89	8520	1.29	8830	2.59
8123	1.59	8551	1.65	8831	2.39
8130	2.19	8552	2.49	8836	49
8200	2.59	8554	2.49	8880	1.33
8210	3.49	8810	. 79		
9000	SERIES	TTL.			
9002	. 34	9309	89	9601	99
9301	1.14	9312	89	9602	89

Data sheets supplied on request $\$ 1.00$
Add $\$.50$ ea. for items less than $\$ 1.00$

CMOS

74 C 00	.39	74 C 74	1.15	74 C 162	3.25
74 C 02	.55	74 C 76	1.70	74 C 163	3.25
74 C 04	.75	74 C 107	1.50	74 C 164	3.50
74 C 08	.75	74 C 151	2.90	74 C 173	2.90
74 C 10	.65	74 C 1543.50	74 C 195	3.00	
74 C 20	.65	74 C 157	2.19	80 C 95	1.50
74 C 42	2.15	74 C 160	3.25	80 C 97	1.50
74 C 73	1.55	74 C 161	3.25		

DECEMBER SPECIALS

Resistor	$2.15 \mathrm{KOHM} \mathrm{1} \mathrm{\%} 1 / 2 \mathrm{~W}$ Corning (Film)	2/S. 25
Resistor	$4.99 \mathrm{KOHM} \mathrm{1} \mathrm{\%} 1 / 2 \mathrm{~W}$ Corning (Film)	2/5. 25
Capacitor	5.0 mid. 25 WVDC General Instrument	2/5. 25
Microswitch	Mini Pin Plunger 104 125/250 VAC	2/6. 95

7410	triple 3 input NANO gate DIP	$S .17$	339	quad comparator DIP	1.50
7437	quad 2 input NAND buffer DIP	.35	8223	programmable ROM, 256 bit DIP	3.95
74121	one snot DIP	.39	MAN 1	Red 7 seg display 270 (specify	
74193	Binary up/down counter DIP	1.25		red or clear pkg.)	2.39
8880	hi volt 7 seg decoder/driver DIP	1.25	MM5203	UV Erasable PROM	
311	hi perf volt comparator mDIP or DIP	89		2048 Bit Prime Ouality	24.95

10\% OFF ON ORDERS OVER \$25.00

ALL IC'S \& LED'S ARE NEW, UNUSED, MARKED, SURPLUS PARTS. SATISFACTION GUARANTEED.
Shipment will be made via first class mail - postage paid in U.S., Canada and Mexico - within three days from receipt of order. Minimum order $\$ 5.00$. California residents add sales tax.

INTERNATIONAL ELECTRONICS UNLIMITED P.O. BOX 1708 MONTEREY,

INTERNATIONAL ELECTRONICS UNLIMITED

LOGIC PROBE KIT
Checks TTL and DTL logic states in circuit or isolated Dual slope memory for pulse detection Ten nano sec capability
Internal 5 V regulator
Kit is complete with 5 IC's, FET, PC Board 8 all
necessary components, case, probe
instructions 8 lomponents,

CLOCK KITS

2.24 hour selection

Long life, large LED displays
6 DIGIT
MM5313. 6-MAN 1's (.270"), trans, diode,
perf. board and necessary components except
pwr transformer and case
4 DIGIT
MM5312, 4-MAN 1's same except 4 DIGIT

10\% OFF ON ORDERS OVER $\$ 25.00$
TRANSISTORS

TRANSISTORS ARE NEW, FIRST QUALITY, BRANDED DEVICES -. ON HAND FOR IMMEDIATE SHIPMENT

RESISTORS

15	ohm	5\%	1w Corning	Film	. 08
15	ohm	5\%	25w Dhmite	WW	75
28.7	ohm	1\%	1w Dale	Film	25
75	ohm	5\%	8 w Dhmite	WW	39
102	ohm	1\%	1/w Corning	Film	15
200	ohm	5\%	5 w Inti. Tect.	WW	. 30
220	ohm	10\%	\%/w Stackpole	C Comp	. 07
330	ohm	5\%	\%/w Stackpole	C Comp	. 10
390	ohm	5\%	2w Allen Bradley	C Comp	. 25
450	ohm	5\%	5w Dale	WW	. 30
500	ohm	5\%	1w Allen Bradiey	C Comp	. 19
620	ohm	5\%	1/sw Stackpole	C Comp	. 10
681	ohm	1\%	\%/w Dale	Film	. 20
750	ohm	1\%	\% Dale	Film	. 20
1	Kohm	1\%	1/2w Corning	Film	. 15
1	Kohm	5\%	10w Dale	WW	. 35
1.2	Kohm	1\%	1w Intl. Rect.	C Comp	. 25
1.6	Kohm	5\%	1/2w Stack pole	C Comp	10
2	Kohm	1\%	Kuw Dale	Film	. 20
2	Kohm	5\%	$5 w$ Intl. Rect.	WW	. 30
2.15	Kohm	1\%	1/2w Corning	Film	15
2.4	Kolm	1\%	5 w Intl. Rect.	WW	. 50
2.5	Kohm	5\%	25w Ohmite	WW	75
2.7	Kohm	5\%	5w Dale	WW	. 30
3.01	Kohm	1\%	\%w Electra	Film	15
4	Kohm	5\%	10w Dale	ww	. 35
4.7	Kohm	1\%	\%w Corning	Film	15
5.6	Kohm	5\%	2w A.B.	c Comp	25
7.5	Kohm	5\%	3/2w Burroughs	C Comp	. 10
8.25	Kohm	1\%	1/2w Electra	Film	15
9.09	Kohm	1\%	1/2w Corning	Film	15
9.1	Kohm	5\%	2w A.B.	c Comp	25
10	Kohm	1\%	1/2w Corning	Film	15
15	Kohm	10\%	1/2w Stackpole	C Comp	. 07
17.4	Konm	1\%	1/sw Corning	Film	. 15
20	Kohm	5\%	1w A.B.	c Comp	. 19
23.7	Kohm	2\%	1/2w Corning	Film	15
39	Kohm	1\%	1/w Corning	Film	15
51	Kohir	5\%	1/3w Burroughs	c Comp	10
75	Kohm	1\%	1/2w Corning	Film	15
100	Kohm	1\%	1/2w Corning	Film	15
120	Kohm	5\%	\%/w Burroughs	C Comp	10
130	Kohm	5\%	\% $\%$ W Stackpole	C Comp	10

CAPACITORS

0033	mid	100V		Skottie mylar axial	S . 10
0047	mfd	100V	10\%	G.E. mylar axial	. 09
0047	mfd	100V	10\%	Gen. Inst. mylar axial	. 09
. 01	motd	200 V	20\%	Aerovox paper axial	05
02	mfd	100V	1\%	Sprague mylar axial	15
1	mfd	600 V	3\%	Aervox paper axial	. 20
1	mid	400 V		Aervox paper axial	. 20
. 1	mfd	200 V		CDE paper axial	15
. 1	mfd	200 V		Aervox paper axial	15
5	mid	400 V	10\%	Gen. Inst, mylar axial	. 35
1.0	mid	350 V	.68\%	Mallory Elec axial	. 50
2.0	mfd	200 V	20\%	Aerovox Elec axial	. 20
4.0	fd	350 V		Sprague Elec axial	45
5.0	mid	25 V		Gen. Inst. Elec axial	15
10	mfd	150 V		Spraque Elec axial	. 30
30	mid	300 V		Mallory Elec axial	. 35
60	mfd	350 V		Mallory Elec axial	75
1,000	mid	100 V		Sangamo Comp grd can	2.65
1,000	mfd	50 V		CDE Elec axial	1.25
2,000	mid	15 V		Mallory Elec can	85
6.000	mfd	25 V		Sangamo Comp grd can	3.75
50	mtd	285 V		I.C.C oil imp bathtub	. 60

SWITCHES

MISC. COMPONENTS

1 ohm 25w 5A Memcor wire wound pot
$100 \mathrm{ohm} 1 / 2 \mathrm{w}$ Bourns EZ frim WW 30 turn po 10 Kohm V/w Bourns EZ trim ww 10 turn po MDA 962 Motorola fullwave bridge 10A. 100 V AEX 43-1 TEC selenium Rectifier
in 29904 Motorola 33V 1w zener diode LA 2751 Fenwell Thermister 550-100 6113 Elwood Thermal
Panel Light PTT red DPST SW W/ Mount Tec Panel Light red Neon W/NE 2 Bulth Snap Mount 4 Terminal Chassis Count Terminal Strip
Chassis Mount Cable Clamp $1 /{ }^{\prime \prime}$ Nylon

EXPAND YOUR STEREO TO QUADRIPHONIC HI-FI

- BUILD the VISTA Full Logic "SQ" Decoder.
- As featured Exclusively in RADIO-ELECTRONICS, Oct. 1974.
- Latest CBS licensed circuitry using 3 Integrated Circuits. "SQ" Matrix Decoder, with Full Logic and Wave Matching.

KIT SQ-1 $\quad 3$ Motorola IC's ONLY Etched \& Drilled
$\$ 37^{50}$
Shipped Prepaid In USA \& CANADA N.Y. State add Tax Circuit Board 5\% Film Capacitors 5\% Film Resistors Electrolytics Controls

PHOTOLUME CORPORATION
118 East 28th STREET, New York, N.Y. 10016

Circle 88 on reader senvice card

COLUMBIA 4 CHANNEL SQ
Solid state SO 4 channel adapter, 2 amps built in. Decodes 4 channel or synthesizes 4 channel. . . . $\$ 35.00$

AW-FW RAOIO SI5.UU

For console installation,w/face
plate, no knobs.
Stereo amps for tape or turntable playback. . $\$ 15.00$
Pair of matching speakers w/wfmrs
for above 55.00
PHOVO STHTUBE
For use with most Instamatic
cameras. With nicad battery and
built-in charger. Never buy flash cubes again. S9.95 CALCULATOR CHASSIS
Fully assembled pocket calculator
chassis with calculator chip. Uses
LED readouts, not included . 55.00
POWER AN: XFMR 380 WAIT
115 volt input, 64VCT 6 amp output.
\$11.95 each, 2/s22, 5/550
BOOKSFLELF SPEAKERS
Completely finished, $9 \times 12 \times 5$ in-
ches. 16 ohm, with extension
cord. $\ldots \ldots515 /$ pair
All above material plus shipping. 96 page catalog free.

JOHN MESHNA JR. PO Box 62 E. Lynn Mass. 01904

CT 5001 CALCULATOR CHIP ca 3.95
8270 DIP 4-BIT SHIFT REGISTER
4-Bit Shift Register…parallel and
serial input and output;data entry
is synchronlzed with clock pulse.
CARBON RESISTORS

FAIRCHILD "TRIMPOTS" ea. only $\$.89$ for $\$ 7.50$ Brand new 20 turn precision trimmers. These
are prime parts mostly individually packed in scaled envelopes. These values in stock
500 oin

POTTER

BRUMFIELD
Type KHP Relay 4 PDT 3A Contacts fint

DIODE ARRAY
10 in914 Silicon Signal Diodes in one
package. 20 leads spac
IC SOCKETS PBC Mounting

o
GIANT SALE ON LED'S期

 2-MV3: micio-mipi "pin nead" dome, To-18, greep lite C.MVsob, visibe, red, clear dome lens To- 18

 S MVS. micro-mins, Axial leads, red lens, red lite 5-MVSO13, sm, dome, 2 hi red dome, soft red difi lite. To-18 S.MVSos4, red jumbo dome dens, TO-18 red lite, upright 5-MV5080. 1-MVSO94., red bi-polar, solid state lamp V to $110-11 \mathrm{BVAC}$ - DC 3-MV5222, green jumoo dome, green lite, panel snap
2-MVS282, micromini, green lens TO-18, rreen lite 2-MV5322, yellow jumbo dome yellow lite, panel snap-i
П 2-MV491. jumbo. Tri-State. RED. GREFN. COUPLERS ${ }^{2}$ 2-MCV2, 1500 V isolation photo tranaix

"siminoon Dollar Stretchers

8 8 0 8 8 8 0 0 8 8

8
8
8
8
0
0
8
8
8
8
8
8
8

I.C. \& LED HOBBY-ONICS

\section*{| 8 |
| :--- |
| 8 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 8 |
| 8 |}

3-1.WATT AUDIO AMPLIFIERS, Westinkhouse. T
5.MOBBY MEMONY CELLS. SN7481, up to 16-Celf. DIP

1. $\mathbf{5} 311$-14 CLOCM ON A CHIP, 4 -or- 6 dirit, 24 -or- 28 -pin ${ }^{\circ}$
2-MM5736 6 -Digit Calculator on a Chip hobby, hobicy
5-IBMAIRCHILD-MATIONAL, 9000 Series ICs, dips, hoble
5-IBM IC's with pe hoard, many parts. from computors.
1-AM RAOIO.ON.A-CHIP, by Sprague. DIP
4-DUAL 2-WATT "ChIP, by Sprague, DIP, u test em

O-LED HOBBY SURPPAIZE
-OPCOA SLA-10. MANTE, rast. typen, factory rejects, no lest
5-MONSANTO MAN-4, $19^{\prime \prime}$ charac, 1 -or-more sems missing, r
10-SPRAGUE DIPS, LIMEAR OP AMPS, 2111 sernes, 2120
1-MAN-3. "THE CLAW'. One dot mixaing, 100% periect
4.OUAL TO9, dlp pak. oD Amps, untested
$10-R C A C A-3000$ OP AMPS. TO-E case

7

GENERAL ELECTRIC T.P.L. SOLID STATE TWO-WAY RADIOS

(Specily trequency range) FE/RE 52, JA1, 2, of 3 series. $25 \cdot 50 \mathrm{MHz}, 12$ volts, 35 walts. tront or rear mount, fully solid state receive, 3 tubes in transmitter, fully narrow band. com plete with accessories

$$
s 178^{00}
$$

(specily Irequency range)
FE/RE 72, JA1. 2. or 3 series $25-50 \mathrm{MHz}, 12$ volts. 100 watts, front or rear mount. fully solid state receive. 4 tubes in trans
mitter, fully narrow band. com. mitter, fully narrow band. complete with accessories s28800

FE/RE 53. JA6 series. 150-174 $\mathrm{MHz}, 12$ volts. 35 watts. front or rear mount, fully solid state eceive 4 lubes in transmitter. fully narrow band. complete with accessories
${ }^{5198}{ }^{00}$

FE/RE 73, JA6 series, 150-174 $\mathrm{MHz}, 12$ volis, 80 watts, fron or rear mount, fully solid state receive. 3 tubes in transmitter sully narrow band complei with accessories
${ }^{5} 298^{00}$

CMFT50. 25.54 MHz .12 volt
50 watts. Pransistorized power
R.C.A.
s12800
accessories
GREGORY ELECTRONICS CORP. 251 R1. 46, Sadde Brook. N. J. 07662 Phone: (201) 409-9000

MAGNUS 3 OCTAVE TONE GENERATOR BOARD

MAGNUS model 17003 octave tone generator board.contains 12 separate tunable oscillators for total of 37 notes, plus 3 oscillators ormer Requires 36 volrs $\ddagger 10$ apmp a power supply except tran lectronic organ or synthesizer. Boards gew basic start for your tact or broken component. Parts alone worti many times the price STOCK NO.J5200 with data sheets $\$ 14.95 \quad$ 2/27.00

37 he) heY Board For Magnuis TONE BOARI)

ifililinilililii

This keyboard is the one designed for the model 1700 TONE BOARD shown above. Limited quantity, so we can onlv sell a kevboard to purchasers of the TONE BOARD, or those who have recently purchased a TONE BOARD from us.
KEYBOARD \& TONE GENERATOR BOARD
For those who previously purchased TONE BOARD
$\begin{array}{ll}\text { For those who previously purchased TONE BOARD } \\ \text { STOCK NO.F5200B Key board } \$ 10.95 & 2 / 20.00\end{array}$
36 VOLT, 1.0 AMP. TRANSFORMER
This transformer has 2 windings, one at 36 volts, 10 amp. $\&$ the other 5.5 volts@ 1.0 amp . Ideal for the MAGNUS TONE OVE
STOCK NO. F9911 $\$ 3.75$ ea. $2 / 7.00$

WE'RE NOT LION.
Hard-to-beat
QUALITY COMPONENTS
prices
BRIGAR
(e) electronics

				$\text { PRICE } \underset{1,6}{90 ¢}$	
MFD	VDC	SIZE	MFD	VDC	SI2E
30000	5	1-3/8x $4-3 / 16$	6000	55	$2 \times 4-3 / 8$
60000	5	$3 \times 4-1 / 2$	750	60	$1 \times 3-1 / 2$
25000	6	2x4-1/2	3100	75	$2-1 / 16 x^{4}-3 / 8$
40000	7	2×5	3600	75	2-1/16x4-1/4
15000	10	$2 \times 4-1 / 2$	1500	80	$2 \times 4-1 / 2$
15000	12	2x4-1/2	400	100	1-7/16 $\times 2-1 / 2$
10000	15	$2-1 / 16 \times 4-1 / 2$	500	200	$2-1 / 16 \times 4-3 / 8$
12500	16	$2 \times 4-1 / 2$	750	200	$1-3 / 8 \times 4-1 / 2$

| SPRAGUE HYPASS FILTER CAPACITOR | GENERAL ELECTRIC TUBULAR |
| :--- | :--- | Part \# 48P16. . Suf at 600 vde $1^{\prime \prime} \times 2-1 / 4 "$ long. Female screw ELECTROLYTICS

2000 uf e 25 vdc 85° SALE PRICE $\$ 1.00$ ea. 250 uf e 50 vdc 850 mt.g. Bypass VHF circuits, supress TVI from short wave tranSALE PRICE 401 ea. mitters. New cost $\$ 3.95 \mathrm{ea}$.

POTTER BRUMFIELD RELAY RRIGAR SPECIAL BARGAII* PRICE

$$
\$ 1.40 \text { each }
$$

Type KH 5505. Sub miniature. Identical to KH-17D1
DIPPED SILVERED MICA CAPACITORS DM 19 270pf - 500 vde 5% amp contacts. Clear dust cover. gold flashed contacts. Mts by $3-48$ 300pf - $500 \mathrm{vdc} 5 \% \quad 7 \$$ stud or solder terms. Relay size: 430pf - $500 \mathrm{vdc} 5 \% \quad 9 \phi$ BRIGAR SPECIAL PRICE $\$ 1.00 \mathrm{ea}$.

8 BRiGAR
 e electronics

EREFI catalog

10 Alice Sireet, Binghamton, New York 13904
-Tel.: 607-723.3111
SEND CHECK OR MONEY ORDER \qquad Addren

Circle 93 on reader service card

Give the world a little gift today. Blood.
 The Arserican Red Cross. The Good Neighbor.

Thanks to you it's working

The United Way

An

CANADIAN'S free catalog. IC's Semi's, parts. CORONET ELECTRONICS, 649A Notre Dame CORONET ELECTRONICS, 649A Notr
RADIO \& TV tubes 36c each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, CA 92105
NEW calculator IC's. Free catalog, COMPUTERPHONE, 16022 SE, Renton, WA 98055 LOW noise resistors - $1 / 4 \mathrm{~W}$, 5%, carbon film from $10-3.3 \mathrm{Meg}$ for $31 / 2 \mathrm{c}$ each. Fifty of one value for $\$ 1.25 .10 \%$ discount over \$50. 75c postage/handling. Free samples and specifications. COMPONENTS CENTERRE, Box 134, New York, NY 10038.'

INGENIOUS new application of computer concepts. Memorize 20 random true-false answers in less than 30 seconds, mathematically! Send $\$ 2.00$ for complete description. FOATSR, Box 1144, Forest Park, GA 30050

 20-WATT STEREO AMP

RCA TYPE
TRAMSISTOH ARRAYS $\$ 1.50$

Inflation-Fighting ECONOMY IC PRIC

NATIONAL LINEAR OP AMPS

Yikess	
	8 O
	Q Lme.jos nek voll Rok
cent	
smomot	-er
	*

IC'S FOR EXPERIMENTERS

SN		-
		SN
	5 \%or	$\square \mathrm{sm}$
		- $\mathrm{SNO}^{1 / 7193}$

Lmana O Amps

 BUY ANY 10 - TAKE 15%

INDUSTRIAL SPEED CONTROL \$4.95

\qquad

33995

20-WATT STEREO AM-FM HTe tho follow in contole on front panel. Piono MULTIPLEX

VOLTAGE REGULATORS TO-3	
CALCUL ATOR CHIP A103O North American Rockwell Al030 clock: 8 digit floating or fixed DP : full memory and con stant 42 pin staggered lead DIP (unbent) \qquad	
74S206 SCHOTTKY BIPOLAR 245206 Schoteth Bipy 12 2 256×1 	
10 AMP FULL WAVE BRIDGE RECTIFIER	
DIP RC NETWORKS	

Circle 96 on reader service card

RECEIVER-TRANSMITTER

R-392/URR RECEIVER: High performance, rugged, 32 Bands; 500 KHZ thru 32 MHZ continuous. Mechan. ical counter type digital readout to 300 HZ . Separate Megacycles and Kilo. cycles tuning. Triple conversion lower eight bands, double conversion all others. Built In crystal calibrator, squelch, RF gain, audlo gain, antenna tuning, BFO, varlable selectlvity 8, 4, 2 KHZ . Requires 22.30 VDC 3 Amps. Size: $111 / 2 \times 14^{1 / 4 \times 11^{\prime \prime} . W t .: ~} 52$ Jbs. Shpg. Wt.: 65 lbs.
Used, Reparable: \$125.00 Used, Checked: \$195.00 T-195/GRC-19 TRANSMITTER: $1.5-20 \mathrm{MHZ}$, 10 Bands. Freq. stablity 0.03% plus 1000 HZ . Manual or automatic tuning. CW, voice, or FSK operation. Power output: 50 Ohm antenna; 15 -
12 MHZ 100 watts, $12-16 \mathrm{MHZ} 90$ watts, 16 -
 30 VDC 42 Amps maximum, standby 9 amps. Size: $111 / 2 \times 141 / 4 \times 22^{\prime \prime}$. Wt.: 122 Ibs.; Shpg. Wt.: 150 lbs. $111 / 2 \times 141 / 4 \times 22^{\prime \prime}$. Wt.: 122 Ibs.; Shpg. Wt.: 150 Complete Reparable: $\$ 89.50$ MT-851 MOUNTING BASE for R.392 \& T.195. MT-851 MOUNTING BASE for R.392
Shpg. Wt.: 60 Ibs.
$\$ 10.00$ CX-1599 CABLE, connects R-392 to T-195 $\overline{\text { P }}$ 10" length: ... $\$ 4.95$ AN/GRC-19 MANUAL: $\$ 8.50$ T-195 Maintenance MANUAL: $\quad \mathbf{\$ 7 . 5 0}$ COMBINATION OFFER: Reparable R-392, T-195, MT.851, CX-1599, T-195 Battery Cable: Special Price, Complete: Prices FOB, Lima, O. Send for Free Catalog: Dept. RE

fali RADIO SALES

1016 E-EUREKA • BOX 1105 • LIMA, OHIO • 45802
SEMICONDUCTOR and parts catalog. J. 8. ELECTRONICS, Box 1437, Winnipeg, Mani toba, Canada
SURPRISE! Build inexpensively, the most unusual test instruments, futuristic gadgets using numerical readouts! Catalogue free! GBS, Box 100B, Greenbank, WV 24944 WHOLESALE, scanners, CB/SSB/AM, crystals, directories. Catalog 25c. G-ENTERPRISES, Box 461R, Clearfield, UT 84015

This is our long time best seller. board measures $4 \frac{1}{a^{\prime \prime}} \times 12^{\prime \prime}$, and is loaded with all types of components. Transistors, diodes, SCRs, many morf Components are mountes so that they may be removed with long leads.Manv different styles. Each board weighs 1 lb . STOCK NO. 29082 2/1.50, $10 / 6.00 \quad 24 / 12.00$

8 LOADED CALCULATOR BOARDS

$82 \frac{3}{4}$ " $\times 3 \frac{3}{4}$ " boardsloaded with late style components, from the most sophisticated calculator manufaciurer in the business. STOCK NO. Z9946 8 different boards \$3.00. 16/5.00

REED RELAY TIMER BOARD
Board contains heavy duty COOK ELEC TRIC reed relay, and 2 timing circuits. When 24 volts is applied to board, relay goes or, for time determined by 1 timing circuit, then goes off for time devermined by other timing circuit, and then repeats A mechanical flip flop. Great for flasher and other on off devices
STOCK NO. 29972 \$2.00 ea. 3/5.00
MINIMUM ORDER $\$ 5.00$. Include postage, excess refunded. New edition of our catalog now avallable.

21 million Amerlcans have hig those who have is. don't know it When blood pressure goes highe than il should. and stays high, it sels
the stage for heart atlack or stroke Most cases of high blood pressure Most cases of high blood pressure
can tee controiled wilh drugs and other Bdyances in veatment That why you should see your doclor reg.
ularly Only he can tell if you need ularly Only he can tell il you need

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume responsibility for any errors which may appear in the index below.

READER SERVICE CARD NO. PAGE
62 Allison Automotive 81
Bell \& Howell Schools46-49
22 B \& K Division of
Dynascan Corp. 32
2 Blonder-Tongue 2
78 Brooks Radio \& TV Corp. 99
84 Castle TV Tuner
Service Corp.Cover IV
4 Channel Master 7
27 Chemtronics Corp. 78
10 CIE, Cleveland Institute of
Electronics
.18-21
67 Continental Specialties Corp. 84
CREI, Division of the McGraw-Hill Continuing Education Center .74-77
18 Crown International 28
81 Data Precision Corp. 96
79 Datak Corp. 97
71 Delta Products, Inc. 85
30 Edlie Electronics 80
83 Edmund Scientific Co. 110
77 EICO
Electronic Instrument, Inc. 88
12 Elenco Electronics 24
EMC, Electronic Measurement Corp 97
64 Enterprise Development Corp. 82
20 EV-Game Inc. 30
82 Fordham Radio Supply Co. 98
3 General Electric Corp. 5
76 Grantham School of Electronics 87
GTE ElectronicComponents1, Cover III
100 Heath Co. 89-95
17 Hewlett-Packard 27
7 ICS, International Correspondence Schools 15
14 Indiana Home Study Institute 26
11 International Components Corp. 22
16 International Crystal Mfg . Co. 26
70 Jensen Tool \& Alloy 85
Jerrold Electronics 13
73 Lectrotech, Inc 86
80 Milwaukee Lock 96
MITS, Micro-Instrumentation Telemetry Systems, Inc. 25
74 Mountain West Alarm Supply Co. 86
61 National Camera Co. 81
National Technical Schools 36-39
NRI Training 8-11
25 Olson Radio Corp 73
68 PAIA Electronics 84
PTS Electronics Cover II
Radio Shack 17
RCA Electronic ComponentsPicture Tubes23
63 Test Equipment 81
75 RGS Electronics 87
72 Rye Industries 86
15 Scelbi Computer
Consulting, Inc 26
66 Schober Organ 83
8 Sencore Inc. 16
21,23 Shure Bros. 31, 72
19 Southwest Technical
Products 29

READER SERVICE CARD NO. PAGE
26 Sprague Products Corp. 73
Sylvania Technical School
Home Sudy Division56-59
6 Tab Books 14
69 Technical Documentation 84
65 Telematic 83
24 Tri-Star 72
Vintage Radio 88
28,29 Weller-Xcelite Electronics Division

MARKET CENTER

86 Ancrona Corp. 101
ATV Research Corp. 106
90 Babylon Electronics 104
93 Brigar Electronics 106
Command Productions 100
95 Delta Electronics106, 108
85 Digi-Key 100
Fair Radio Sales 108
Gregory Electronics Corp. 106
87 International Electronics
Unlimited
102, 103
91 James Electronics 104
Lakeside Industries 100
Lesco Electronics 109
89 Meshna Electronics, John Jr. 104 Music Associated 106
88 Photolume Corp. 104
92 Poly Paks
.105, 107
Printed Circuit Techniques 109
Solid State Sales 109
96 Valu-Pak 108
NEW Canadian Magazine, "Electronlcs Workshop", $\$ 5.00$ yearly, sample $\$ 1.00$. ETHCO, Box 741 " A ", Montreal
FREE bargain catalog. LED's, transistors, IC's, PUT's relays, xtals, unique microminiature components, misc. CHANEYS, Box 15431, Lakewood, CO 80215
T.V. typewriter and computer IC's-1 ea. 2513, 1 ea. 2518 and 6 ea. 2524 \$42.50. 8008-CPU $\$ 75.00$. All orders shipped 1 st class mail. Cal. residents add 6%. Cashier checks or money orders only. M \& R ENTERPRISES, P.O. Box 1011, Sunnyvale, CA 94088

Radio-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New York, NY 10003 (212) 777-6400
President: M. Harvey Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

EAST

Stanley Levitan, Sales Manager
Radio-Electronics
200 Park Ave. South
New York, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co.
6319 N. Central Ave.
Chicago, IL 60646
(312) 792-3646

PACIFIC COAST/Mountain States
Jay Eisenberg
J.E. Publishers Representative Co.,

8732 Sunset Blva.,
4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

ELECTRONIC Ignition: Capacitor, transistor, pointless. Auburn sparkplugs. Information 10c. ANDERSON ENGINEERING, Epsom, NH 03234
1101A RAM: $\$ 2.25 ; 1103$ RAM: $\$ 3.00$ 2513, 2516: Char, Gen: \$12.75.
ELECTRONIC DISCOUNT SALES, 138 N . 81 st St., Mesa, AZ 85207
AUTORANGING DMM, deluxe vom's, logic probes and more. Lowest prices. Free catalog. ELECTRO INDUSTRIES, 4201 Irving Park Road, Chicago, IL 60641
DIGITAL electronics! Complete schematics, parts lists, theories-Discrete Component Digital Clock, $\$ 3.00$. Increase technical competence, hobby skills-Complete course in Digital Electronics is highly effective, $\$ 10.00$. Free literature. DYNASIGN, Box 60R2, Wayland, MA 01778
DYNACO-A-R, transistors, repairs-boards-8 units, speaker service. Send for prices \& details: BEAR ELECTRONICS, 177-R Hillcrest Road, Mt. Vernon, NY 10552

PRONTED EORCUDT TECMNDOUSS
a booklet of "how to" basics 39.00

Trumbull, 833 Ralra Dr
Fil Cerrito, Ca. 94530
AUTOMATIC auto burglar alarm $\$ 9.95$ Ppd. Ten years guaranteed, BEITA, Box 25289, Los Angeles, CA 90025

LIVE IN THE WORLD OF TOMORROW ...TODAY!

And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in ecological and physical science items - plus 4,500 finds for fun, study or profit... for every member of the family.

- A BETTER LIFE STARTS HERE

Take temperatures in seconds
Edmund's new electronic oral thermometer obsoletes glass mercury type. Seconds instead of minutes, more accurate, much easier to read! flexible probe, olace under tongue, flexible probe, place under tongue, push button, in F.O \& C. ${ }^{\text {a }}$. $92-106^{\circ} \mathrm{F}$. $33-41^{\circ} \mathrm{C}$.) in $1 /{ }^{\circ}$ increments, $97-101^{\circ} \mathrm{F}$. to $\% 10^{\circ}$. Safe, hygienic, no sauinting compact metal case fits in doctors', nurses' shirt pocket. Incls. $9 v$ trans. batt., instrs.
Stock No. 42,210 EH
\$25.00 Ppd.
3.CHANNEL

COLOR ORGAN KIT
Easy to build low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to colored lamps (i.e. "Hows"-reds, "mid-dles"-greens, "thighs"'blues. Just connect hi.fi, radio, power lamp etc. \&
 plug ea. lamp string inlo own channel (max. 300w ea.) Kit fea tures 3 neon indicators, color intensity controls, controlled individ SCR circuits; isolation transformer; custom plastic housing; instructions \$18.95 Ppd.
Stock No. 41,831 EH

PRO ELECTRONIC
SOUND CATCHER
Parabolic mike $\mathrm{w} / 183 / 44^{\prime \prime}$ reflecting shield \& 2 I.C.'s in amplifier magnifies signals 100x that of omni-directional mikes. Catch a songbird $1 / 2$ mile off: QB's huddle strategy; sounds
 never before heard. Super directivity gives highest signal to noise ratio poss. Safe: auto. cuts off ear damaging noises. Earphones, tape recorder output, tripod socket. Req. two 9v trans. batt. (not incl). No. 1649 EH ($51 / 2$ LB.)
\$299.00 Ppd.
BIG EAR "TOY" MODEL $\# 80,176$ EH

LIE DETECTOR TYPE METER

Amazing Emotion Meter reveals hidden likes, dislikes. Easy to use; sensitive, accurate. Measures changes in body resistance caused by changes in emotional state. Needle movement indicates emotional response (not whether favorable or untavorable).
Effectiveness depends on questions asked and interpretation. Unique 10 se se ideal for entertainment and education - par ties, science projects, psychological experiments. Requires 9 V Iransistor battery (not included). Instructions.
No. 42,194 EH ($27 / 8 \times 4 \times 13 / 4$ ")
$\$ 19.95 \mathrm{Ppd}$.

GET A CHARGE
FROM THE SUN!
Our 12V Solar Battery Charger allows direct conversion of light-to-electricity. Compact panel put on a boat can automatically charge its 12 V battery over entire daylite period. Use anywhere for a trickle charge. Big value.
 it comprises $30^{1}{ }^{2} \mathrm{~V}$ silicon solar cells in series $\mathrm{w} / \mathrm{diode}$. No. 71.971 EH (AB. 30 W.HRS./WK.)
$9 \times 18^{\prime \prime}$ HI CURRENT MOOEL ($6 \mathrm{~W}, 12 \mathrm{~V}, 500 \mathrm{~mA}$) No. 72,010 EH (AB. 150 W-HRS./WK.) EXG" LO VOLTAGE MODEL ($1.5 \mathrm{~V}, .38 \mathrm{~W}, 250 \mathrm{~mA})$ No. 42.172 EH
. $\$ 420.00$ Ppd $\$ 49.95 \mathrm{Ppd}$

LOW COST

7X INFRA.RED VIEWER

New, great buy for infra-red crime detection surveillance, security sys tem alignment, R. detection, lase checking, nite widite stuay, any work requirig wish. spectum sel contained scope w/everything but I.R. light source works in any I.R. lit area: 6 V or 12 V power, $6032 \mathrm{I} . \mathrm{R}$. converter tube, $\mathrm{f} / 4.5$ objective lens, adjustable triplet eyepiece, shockproof housing See bright in dark! Under 4 lb ., comparable to others at $\$ 350$ No. 1648 EH ($11 \times 14^{1 / 4 \times 3^{\prime \prime} \text {) }} \quad \$ 199.95$ Ppd DELUXE-WITH I.R. LIGHT SOURCE NO. 1659 EH $\$ 249.95$ Ppd

KNOW YOUR ALPHA FROM THETA! For greater relaxation, concentration listen to your Alpha-Theta brain waves. Ultra-sensitive electrode head band slips on/off in seconds-elimi nates need ror messy creams, etc waves, signals beep for ea. Alpha waves, signals beep for ea. Alpha (L.E.D.) feedback Reliable easy-to-use unit-comparable to costlier models. Competialy safe Comprehensive instruction booklet.
No. 1635 EH ($8 \times 3 \times 4$ "; 2402 .) $\$ 134.50$ Ppd LOW COST "STARTER" UNIT \$55,00 Ppd.

Experiment in the fascinating new field of "Kirlian electrophotography" -images obtained on film withoul camera or lens by direct recording of electric charge transmitted by ani"'aura" differs-animate aura said to "aura" differs-animate aura said to chanues kit incls portable darkroom, double transformer iso lated from power source; instructions.
"HIGH VOLTAGE PHOTOGRAPHY" by H. S. Oakin
$\$ 49.95$ Ppar. No. 9129 EH (60 -PG.) PPBK BK.)
\$5.00 Ppd. OELUXE KIRLIAN PHOTOGRAPHY SET
NO. 72.053 EH
\$399.00 Ppd.

3" ASTRONOMICAL REFLECTING TELESCOPE
See stars, moon, planets close-up! 30 to 90X. Famous MI. Palomar Type. Aluminized \& overcoated $3^{\prime \prime}$ diameter //10 primary mirror, ventilated cell. Fork type equatorial mount. Durable PVC tube. Includes 1" F.L. 30X Rams. den, Barlow lens to triple power, 3 X finder telescopes, hardwood tripod. FREE: "STAR CHART". "HOW TO USE" book.
No. 85,240 EH
 41/" REFLECTOR (45X to 135X) 4 $1 / a^{\prime \prime}$ REFLECTOR W/CLOCK DRIVE "85,107EH $\quad \$ 189.50$ FOB 6" REFLECTOR (48X to 360X) 6" REFLECTOR W/CLOCK DRIVE 85,086 EH \$285.00 FOB

164 PAGES MORE THAN 4500 UNUSUAE

COMPLETE \& MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO.

NAME

AOORESS

Now you don't have to turn down jobs just because the sets were made in the Far East.

Your Sylvania Distributor has solved one of your biggest problems in semiconductor replacements for imported equipment.

Until now, unless your shop was around the corner from an import warchouse, you probably had a tough problem. Especially for those nonrepairable modules.

But not anymore.
Sylvania`s new ECG ${ }^{\text {TM }} 1000$ series gives you over 140 new integrated circuits and modules for imported sets right on your distributor"s shelves.

And, thanks to our newest interchangeability guide (ECG 212E-4), those 140 paris add up to a lot more
when it comes to the number of types they"ll replace.

That means you don't have to watch a profitable repair job walk out the door just because getting the parts could make it unprofitable.

It also means that you've got onestop shopping for all of your repair jobs, foreign or domestic.

Whether you need semiconductors, picture tubes or receiving tubes, you’ll find them all at one electronic supermarket.

Your Sylvania Distributor.

GTE SYLVANIA

Pioneers of TV Tuner Overhauling Originators of Complete TV Tuner Service
Castle offers the following services to solve All your television tuner problems.

Remember!
Simply send us the defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint. Your funer will be expertly overhauled and refurned pramptly, performance restored, aligned to original standards and warranted for 90 days.
Dismantle tandem uhf and vhf tuners and send in defective unit only. Remove all accessaries ... or dismantling charge will apply.
Custom Exchange Service

When our inspection reveals that original tuner is unfit for overhaul, and it is not available from our stock of outright replacements, we offer to make a custom replacement on exchange basis. Charge for this service is $\$ 15.95$ for uhf tuner and $\$ 17.95$ for vhf tuner.
If custom replacement cannot be made we will custom rebuild the original tuner at the exchange replacement price.

All replacements are new or rebuilt. All prices are f.o.b. our plant. Add shipping and handling of $\$ 1.25$ on all prepaid orders. We will ship C.O.D.

CASTLE TV TUNER SERVICE, INC.
5715 N. Western Ave., Chicago, III. 60645 - Ph. 312-561-6354

[^0]: Name Phone
 Company
 Address
 Clity
 State. adat 6
 Foreign, add 10 Pa add 6 , sales tax RE-124

[^1]: \longrightarrow — 3200 SENCORE DRIVE,
 Circle 8 on reader senvice curd

[^2]: Needle for needle. cartridge for cartridge and pin for pin you can't beat an ElectroVoice. The fact is, when you specify Electro-Voice, you save time and effort. You don t need special tools or parts. There's no unusual handling or installation. The result is that you have the best chance to maximize cartridge profits and customer satisfaction with EV • Game

 So see your local distributor for Electro-Voice replacement cartridges. Also ask him for the new EV • Game catalog. It's the most comprehensive and easiest-to-use. Simplifies selection of nearly 700 cartridges. And write to us for our revealing Replacement Cartridge Comparison Chart. Learn more about why we make it a snap for you to repalce cartridges. EV • Game, Inc., Box 711, Freeport, NY 11520 (516) 378-0440

[^3]: ＇What if－－－－？＇＂
 The first question that a technician

[^4]: This article is included in the TAB book "How To Build Solid State Audio Circuits".

[^5]: Shure Brothers Inc．
 222 Hartrey Ave．，Evanston，III． 60204
 In Canada：A．C．Simmonds \＆Sons Limited

[^6]: Name＿
 Address
 City
 ity＿＿＿
 Mail order prices．FOB factory
 Prices and specifications subject to change without notice．
 CL－548

